Matching Items (21)
Description

The right to cast a meaningful vote, equal in value to other votes, is a fundamental tenet US elections. Despite the 1964 Supreme Court decision formally establishing the one person, one vote principle as a legal requirement of elections, our democracy consistently falls short of it. With mechanisms including the

The right to cast a meaningful vote, equal in value to other votes, is a fundamental tenet US elections. Despite the 1964 Supreme Court decision formally establishing the one person, one vote principle as a legal requirement of elections, our democracy consistently falls short of it. With mechanisms including the winner-take-all format in the Electoral College, disproportioned geographic allocation of senators, extreme partisan gerrymandering in the House of Representatives, and first-past-the-post elections, many voters experience severe vote dilution. <br/><br/>In order to legitimize our democratic structures, American elections should be reformed so every person’s vote has equal weight, ensuring that the election outcomes reflect the will of the people. Altering the current election structure to include more proportional structures including rank choice voting and population-based representation, will result in a democracy more compatible with the one person, one vote principle.

ContributorsSluga, Allison Leigh (Author) / Hinojosa, Magda (Thesis director) / Gartner, David (Committee member) / School of International Letters and Cultures (Contributor) / School of Politics and Global Studies (Contributor, Contributor, Contributor) / School of Public Affairs (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
This honors thesis project aims to design and develop the ideal design for a soft robotic grasper used in combination with a robotic supernumerary limb design for impaired individuals (i.e. a wearable robotic limb that branches out of the body), to help accomplish the tasks of daily living. Observations of

This honors thesis project aims to design and develop the ideal design for a soft robotic grasper used in combination with a robotic supernumerary limb design for impaired individuals (i.e. a wearable robotic limb that branches out of the body), to help accomplish the tasks of daily living. Observations of current grasper solutions for similar applications has led to a design that incorporates a soft, pneumatically controlled grasper which integrates with the existing limb. Computational models of the grasper design have been created which demonstrate the grasping capabilities of this proposal. Initial prototypes of this grasper approach have been fabricated for testing and analyses purposes to build a foundation for future implementation.
ContributorsThalman, Carly Megan (Author) / Polygerinos, Panagiotis (Thesis director) / Lande, Micah (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
A concept found that students struggle with in statics and dynamics is free body diagrams. To capture the difficulties students have with this concept, faculty interviews were conducted to determine common errors seen in a classroom setting. The feedback was used to pull questions from a statics concept inventory focused

A concept found that students struggle with in statics and dynamics is free body diagrams. To capture the difficulties students have with this concept, faculty interviews were conducted to determine common errors seen in a classroom setting. The feedback was used to pull questions from a statics concept inventory focused on free body diagrams. Students who have passed statics and dynamics courses in their engineering degree were asked to participate in talk alouds to confirm the faculty input. The talk alouds provided first hand observations of the student thought process when they perform common errors in creating free body diagrams. The results highlighted that students commonly add forces that are not there or fail to only depict the external forces acting on the system in question. A professor describes the occurrence when students insist on adding forces that are not there as phantom forces. To remedy the idea of phantom forces, an intervention was proposed to be implemented into the classroom.
ContributorsTwet, Samantha Ann (Author) / Brunhaver, Samantha (Thesis director) / Lande, Micah (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
Description
Makers are those who enjoy creating things and learning new skills, as well as interacting within a connected community (Doughtery, 2012). Through the analysis of Makers as part of a larger study (Jordan & Lande, 2013) a researcher had noticed the emergence of leadership traits within the Maker community (Oplinger,

Makers are those who enjoy creating things and learning new skills, as well as interacting within a connected community (Doughtery, 2012). Through the analysis of Makers as part of a larger study (Jordan & Lande, 2013) a researcher had noticed the emergence of leadership traits within the Maker community (Oplinger, Jordan, and Lande, 2015). The National Academy of Engineering has determined that leadership is a key quality for the engineer of the future (Clough, 2004). The Engineering Accreditation Commission has determined several necessary outcomes for engineering students that coincide with leadership roles (Engineering Accreditation Commission, 2012). Proactiveness, confidence, motivation, communication, coaching will be important skills for engineers so that they can effectively lead teams, adjust to change, and synthesize (Ahn, Cox, London, Cekic, and Zhu, 2014). In National Academy of Engineering's The Engineer of 2020 (Clough, 2004) future engineers are expected to be in position to influence "in the making of public policy and in the administration of government and industry." The Maker community offers a broad spectrum of individuals engaged in informal engineering and tinkering activities across multiple pathways (Foster, Wigner, Lande, and Jordan, 2015). This study explores leadership using a theoretical framework of competing values (Quinn, 1988) (Zafft, Adams, and Matkin, 2009) including relating to people, managing processes, leading change, and producing results. The study relies upon artifact elicitation (based on photo elicitation (Harper, 2002)) with 40 of these Makers at four Maker Faires in the United States. The artifact elicitation interviews were conducted at the Maker Faires in front of participants' inventions, where the Makers were asked to describe the invention and the process behind it. Using a theoretical framework of competing values (Quinn, 1988) (Quinn, Faerman, Thompson, and McGrath, 1990) and through parallel inductive-deductive analysis, the emergent themes among our sample of Makers include that they express leadership qualities of (1) innovators \u2014 they utilize different skillsets to develop unique products and solutions; (2) monitors \u2014 they evaluate projects and respond to results; (3) directors \u2014 they set goals and expectations of their projects and processes; and (4) producers \u2014 they are determined and possess a personal drive. From the findings a call to action is made on implementing leadership lessons in the engineering classroom.
ContributorsOplinger, James Logan (Author) / Lande, Micah (Thesis director) / Jordan, Shawn (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
Description
Design problem formulation is believed to influence creativity, yet it has received only modest attention in the research community. Past studies of problem formulation are scarce and often have small sample sizes. The main objective of this research is to understand how problem formulation affects creative outcome. Three research areas

Design problem formulation is believed to influence creativity, yet it has received only modest attention in the research community. Past studies of problem formulation are scarce and often have small sample sizes. The main objective of this research is to understand how problem formulation affects creative outcome. Three research areas are investigated: development of a model which facilitates capturing the differences among designers' problem formulation; representation and implication of those differences; the relation between problem formulation and creativity.

This dissertation proposes the Problem Map (P-maps) ontological framework. P-maps represent designers' problem formulation in terms of six groups of entities (requirement, use scenario, function, artifact, behavior, and issue). Entities have hierarchies within each group and links among groups. Variables extracted from P-maps characterize problem formulation.

Three experiments were conducted. The first experiment was to study the similarities and differences between novice and expert designers. Results show that experts use more abstraction than novices do and novices are more likely to add entities in a specific order. Experts also discover more issues.

The second experiment was to see how problem formulation relates to creativity. Ideation metrics were used to characterize creative outcome. Results include but are not limited to a positive correlation between adding more issues in an unorganized way with quantity and variety, more use scenarios and functions with novelty, more behaviors and conflicts identified with quality, and depth-first exploration with all ideation metrics. Fewer hierarchies in use scenarios lower novelty and fewer links to requirements and issues lower quality of ideas.

The third experiment was to see if problem formulation can predict creative outcome. Models based on one problem were used to predict the creativity of another. Predicted scores were compared to assessments of independent judges. Quality and novelty are predicted more accurately than variety, and quantity. Backward elimination improves model fit, though reduces prediction accuracy.

P-maps provide a theoretical framework for formalizing, tracing, and quantifying conceptual design strategies. Other potential applications are developing a test of problem formulation skill, tracking students' learning of formulation skills in a course, and reproducing other researchers’ observations about designer thinking.
ContributorsDinar, Mahmoud (Author) / Shah, Jami J. (Thesis advisor) / Langley, Pat (Committee member) / Davidson, Joseph K. (Committee member) / Lande, Micah (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2015
Description
This study sought the lived and told stories of Native American women working in engineering and technology so that their voices may be heard in engineering education scholarship and challenge assumptions surrounding universal understandings of what it means to be a minority woman in science, technology, engineering, and mathematics (STEM).

This study sought the lived and told stories of Native American women working in engineering and technology so that their voices may be heard in engineering education scholarship and challenge assumptions surrounding universal understandings of what it means to be a minority woman in science, technology, engineering, and mathematics (STEM). The study was directed by two research questions: (1) What are the lived and told stories of Native women in engineering and technology who are leading initiatives to improve their Native communities and (2) How do Native women’s understandings of their identities influence their work and acts of leadership? The study employed narrative inquiry as the methodological framework and was guided by theoretical frameworks of identities as constructed, multiple, and intersectional (Crenshaw, 1989; Tajfel & Turner, 1979), hybridity, and “third spaces” (Bhabha, 2012). The inquiry was also informed by feminist theories of Native scholars (Green, 1983; Kidwell, 1978) and engineering education (Beddoes & Borrego, 2011; Riley, Pawley, Tucker, & Catalano, 2009). The narrative analysis presented three narratives, based upon interviews, field notes, observations, and documents: (1) the story of a Navajo woman working within a large technical corporation (Jaemie); (2) the story of an Akimel O’odham-Mexican woman working within a tribally-owned technical business (Mia); and (3) the story of a Navajo woman growing her own technical business (Catherine). The narratives revealed a series of impactful transitions that enabled Jaemie, Mia, and Catherine to work and lead in engineering and technology. The transitions revolved around themes of becoming professionals, encountering and overcoming hardship, seeking to connect and contribute to Natives through work, leading change for their Native communities, and advancing their professional selves and their Native communities. Across the transitions, a transformation emerged from cultural navigation to leadership for the creation of new hybrid spaces that represented innovative sites of opportunity for Native communities. The strength of the Native spaces enabled Jaemie, Mia, and Catherine to leverage their identities as Native women within the global context of engineering and technology. The narratives denote the power of story by contributing the depth and richness of lived realities in engineering and technology.
ContributorsFoster, Christina Hobson (Author) / Jordan, Shawn (Thesis advisor) / Fixico, Donald (Committee member) / Lande, Micah (Committee member) / McKenna, Anna (Committee member) / Arizona State University (Publisher)
Created2016
Description
The 21st century will be the site of numerous changes in education systems in response to a rapidly evolving technological environment where existing skill sets and career structures may cease to exist or, at the very least, change dramatically. Likewise, the nature of work will also change to become more

The 21st century will be the site of numerous changes in education systems in response to a rapidly evolving technological environment where existing skill sets and career structures may cease to exist or, at the very least, change dramatically. Likewise, the nature of work will also change to become more automated and more technologically intensive across all sectors, from food service to scientific research. Simply having technical expertise or the ability to process and retain facts will in no way guarantee success in higher education or a satisfying career. Instead, the future will value those educated in a way that encourages collaboration with technology, critical thinking, creativity, clear communication skills, and strong lifelong learning strategies. These changes pose a challenge for higher education’s promise of employability and success post-graduation. Addressing how to prepare students for a technologically uncertain future is challenging. One possible model for education to prepare students for the future of work can be found within the Maker Movement. However, it is not fully understood what parts of this movement are most meaningful to implement in education more broadly, and higher education in particular. Through the qualitative analysis of nearly 160 interviews of adult makers, young makers and young makers’ parents, this dissertation unpacks how makers are learning, what they are learning, and how these qualities are applicable to education goals and the future of work in the 21st century. This research demonstrates that makers are learning valuable skills to prepare them for the future of work in the 21st century. Makers are learning communication skills, technical skills in fabrication and design, and developing lifelong learning strategies that will help prepare them for life in an increasingly technologically integrated future. This work discusses what aspects of the Maker Movement are most important for integration into higher education.
ContributorsWigner, Aubrey (Author) / Lande, Micah (Thesis advisor) / Allenby, Braden (Committee member) / Bennett, Ira (Committee member) / Arizona State University (Publisher)
Created2017
Description
This three-paper dissertation explores the ways in which the skills, dispositions, tools, social norms, and ways of knowing associated with maker practices and design theory illuminate opportunities and challenges for changing education systems. Making and design are unique in that they provide alternative visions for the central aims of schooling

This three-paper dissertation explores the ways in which the skills, dispositions, tools, social norms, and ways of knowing associated with maker practices and design theory illuminate opportunities and challenges for changing education systems. Making and design are unique in that they provide alternative visions for the central aims of schooling as well as a novel set of approaches for the realization of such visions. This duality is explored at three organizational scales: student experience, educator practice, and school leadership. The findings of these investigations highlight major barriers to creating and sustaining innovative education systems while also suggesting ways that these barriers may be overcome. The first paper, which details a qualitative study of 27 young adult makers and their parents, suggests that even strong proponents of maker-based education are bound by the institutional logics of formal education and have a hard time imagining how making could be integrated into school. The second paper documents a design-based research study, in which 20 preservice teachers in an integrated science, technology, engineering, and mathematics (STEM) education course show that their current training emphasizes the delivery standards-based content over the design of student-centered learning experiences. These studies prompted and shaped the development of a theoretically grounded, design-based conceptual model, detailed in the third paper, which aims to help multi-stakeholder design teams more rigorously imagine new futures for existing schools using generative, participatory prototyping activities.
ContributorsWeiner, Steven (Author) / Jordan, Shawn S (Thesis advisor) / Lande, Micah (Committee member) / Mishra, Punya (Committee member) / Wylie, Ruth (Committee member) / Arizona State University (Publisher)
Created2022
Description
Learning analytics application is evolving into a student-facing solution. Student-facing learning analytics dashboards (SFLADs), as one popular application, occupies a pivotal position in online learning. However, the application of SFLADs faces challenges due to teacher-centered and researcher-centered approaches. The majority of SFLADs report student learning data to teachers, administrators, and

Learning analytics application is evolving into a student-facing solution. Student-facing learning analytics dashboards (SFLADs), as one popular application, occupies a pivotal position in online learning. However, the application of SFLADs faces challenges due to teacher-centered and researcher-centered approaches. The majority of SFLADs report student learning data to teachers, administrators, and researchers without direct student involvement in the design of SFLADs. The primary design criteria of SFLADs is developing interactive and user-friendly interfaces or sophisticated algorithms that analyze the collected data about students’ learning activities in various online environments. However, if students are not using these tools, then analytics about students are not useful. In response to this challenge, this study focuses on investigating student perceptions regarding the design of SFLADs aimed at providing ownership over learning. The study adopts an approach to design-based research (DBR; Barab, 2014) called the Integrative Learning Design Framework (ILDF; Bannan-Ritland, 2003). The theoretical conjectures and the definition of student ownership are both framed by Self-determination theory (SDT), including four concepts of academic motivation. There are two parts of the design in this study, including prototypes design and intervention design. They are guided by a general theory-based inference which is student ownership will improve student perceptions of learning in an autonomy-supportive SFLAD context. A semi-structured interview is used to gather student perceptions regarding the design of SFLADs aimed at providing ownership over learning.
ContributorsLi, Siyuan (Author) / Zuiker, Steven (Thesis advisor) / Cunningham, James (Committee member) / Lande, Micah (Committee member) / Arizona State University (Publisher)
Created2019
Description

Ultimate Frisbee or "Ultimate," is a fast growing field sport that is being played competitively at universities across the country. Many mid-tier college teams have the goal of winning as many games as possible, however they also need to grow their program by training and retaining new players. The purpose

Ultimate Frisbee or "Ultimate," is a fast growing field sport that is being played competitively at universities across the country. Many mid-tier college teams have the goal of winning as many games as possible, however they also need to grow their program by training and retaining new players. The purpose of this project was to create a prototype statistical tool that maximizes a player line-up's probability of scoring the next point, while having as equal playing time across all experienced and novice players as possible. Game, player, and team data was collected for 25 different games played over the course of 4 tournaments during Fall 2017 and early Spring 2018 using the UltiAnalytics iPad application. "Amount of Top 1/3 Players" was the measure of equal playing time, and "Line Efficiency" and "Line Interaction" represented a line's probability of scoring. After running a logistic regression, Line Efficiency was found to be the more accurate predictor of scoring outcome than Line Interaction. An "Equal PT Measure vs. Line Efficiency" graph was then created and the plot showed what the optimal lines were depending on what the user's preferences were at that point in time. Possible next steps include testing the model and refining it as needed.

ContributorsSpence, Andrea Nicole (Author) / McCarville, Daniel R. (Thesis director) / Pavlic, Theodore (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05