Matching Items (310)
Description
Community-based volunteer organizations are critical to natural resource management in the United States. However, due to volunteer involvement, these organizations struggle with collective action problems: coping with free riding, solving commitment problems, arranging for the supply of new institutions, and monitoring individual compliance with sets of rules. In this study,

Community-based volunteer organizations are critical to natural resource management in the United States. However, due to volunteer involvement, these organizations struggle with collective action problems: coping with free riding, solving commitment problems, arranging for the supply of new institutions, and monitoring individual compliance with sets of rules. In this study, we explore how volunteer organizations can overcome these challenges. To explore how they overcome these challenges, we use the Institutional Analysis and Development framework and the Institutional Design Principles. These frameworks help us understand the impact of natural resource conditions, community attributes, and the rules in use impact volunteer organizations. For this research, we focused on lake organizations in Wisconsin. We collected our data through semi-structured interviews with thirty-one lake organizations and public data. The data were analyzed using constant comparison and linear regression, followed by qualitative comparative analysis (QCA). We reinforce the importance of considering the system holistically when managing a resource the natural resource conditions, the community attributes, and the rules in use. Our study shows the importance of graduated sanctions and low-cost conflict resolution on social-ecological system outcomes. Volunteer-based resource management are an effective way to tailor management strategies to the natural resource condition and the community attributes.
ContributorsWhittaker, Dane (Author) / Janssen, Marco (Contributor) / Janssen,Marco (Contributor) / Leonard, Bryan (Contributor) / Solomon, Chris (Contributor)
Created2020-04-24
Description
Many of the derived features of the human skeleton can be divided into two adaptive suites: traits related to bipedalism and traits related to encephalization. The cervical spine connects these adaptive suites and is itself unique in its marked lordosis. I approach human cervical evolution from three directions: the functional

Many of the derived features of the human skeleton can be divided into two adaptive suites: traits related to bipedalism and traits related to encephalization. The cervical spine connects these adaptive suites and is itself unique in its marked lordosis. I approach human cervical evolution from three directions: the functional significance of cervical curvature, the identification of cervical lordosis in osteological material, and the representation of the cervical spine in the hominin fossil record.
ContributorsFatica, Lawrence Martin (Author) / Kimbel, William (Thesis director) / Reed, Kaye (Committee member) / Schwartz, Gary (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
130356-Thumbnail Image.png
Description
Background
The transmission dynamics of Tuberculosis (TB) involve complex epidemiological and socio-economical interactions between individuals living in highly distinct regional conditions. The level of exogenous reinfection and first time infection rates within high-incidence settings may influence the impact of control programs on TB prevalence. The impact that effective population size and

Background
The transmission dynamics of Tuberculosis (TB) involve complex epidemiological and socio-economical interactions between individuals living in highly distinct regional conditions. The level of exogenous reinfection and first time infection rates within high-incidence settings may influence the impact of control programs on TB prevalence. The impact that effective population size and the distribution of individuals’ residence times in different patches have on TB transmission and control are studied using selected scenarios where risk is defined by the estimated or perceive first time infection and/or exogenous re-infection rates.
Methods
This study aims at enhancing the understanding of TB dynamics, within simplified, two patch, risk-defined environments, in the presence of short term mobility and variations in reinfection and infection rates via a mathematical model. The modeling framework captures the role of individuals’ ‘daily’ dynamics within and between places of residency, work or business via the average proportion of time spent in residence and as visitors to TB-risk environments (patches). As a result, the effective population size of Patch i (home of i-residents) at time t must account for visitors and residents of Patch i, at time t.
Results
The study identifies critical social behaviors mechanisms that can facilitate or eliminate TB infection in vulnerable populations. The results suggest that short-term mobility between heterogeneous patches contributes to significant overall increases in TB prevalence when risk is considered only in terms of direct new infection transmission, compared to the effect of exogenous reinfection. Although, the role of exogenous reinfection increases the risk that come from large movement of individuals, due to catastrophes or conflict, to TB-free areas.
Conclusions
The study highlights that allowing infected individuals to move from high to low TB prevalence areas (for example via the sharing of treatment and isolation facilities) may lead to a reduction in the total TB prevalence in the overall population. The higher the population size heterogeneity between distinct risk patches, the larger the benefit (low overall prevalence) under the same “traveling” patterns. Policies need to account for population specific factors (such as risks that are inherent with high levels of migration, local and regional mobility patterns, and first time infection rates) in order to be long lasting, effective and results in low number of drug resistant cases.
Created2017-01-11
130357-Thumbnail Image.png
Description
Background
The maintenance of chromosomal integrity is an essential task of every living organism and cellular repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time. However, BRCA1,

Background
The maintenance of chromosomal integrity is an essential task of every living organism and cellular repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time. However, BRCA1, an essential gene involved in DNA repair, has been reported to be evolving rapidly despite the fact that many protein-altering mutations within this gene convey a significantly elevated risk for breast and ovarian cancers.
Results
To obtain a deeper understanding of the evolutionary trajectory of BRCA1, we analyzed complete BRCA1 gene sequences from 23 primate species. We show that specific amino acid sites have experienced repeated selection for amino acid replacement over primate evolution. This selection has been focused specifically on humans and our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). After examining BRCA1 polymorphisms in 7 bonobo, 44 chimpanzee, and 44 rhesus macaque (Macaca mulatta) individuals, we find considerable variation within each of these species and evidence for recent selection in chimpanzee populations. Finally, we also sequenced and analyzed BRCA2 from 24 primate species and find that this gene has also evolved under positive selection.
Conclusions
While mutations leading to truncated forms of BRCA1 are clearly linked to cancer phenotypes in humans, there is also an underlying selective pressure in favor of amino acid-altering substitutions in this gene. A hypothesis where viruses are the drivers of this natural selection is discussed.
ContributorsLou, Dianne I. (Author) / McBee, Ross M. (Author) / Le, Uyen Q. (Author) / Stone, Anne (Author) / Wilkerson, Gregory K. (Author) / Demogines, Ann M. (Author) / Sawyer, Sara L. (Author) / College of Liberal Arts and Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-07-11
Description
Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median

Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median survival time is only twelve months from initial diagnosis: Patients who live more than three years are considered long-term survivors [2]. GBMs are highly invasive and their diffusive growth pattern makes it impossible to remove the tumors by surgery alone [3]. The purpose of this paper is to use individual patient data to parameterize a model of GBMs that allows for data on tumor growth and development to be captured on a clinically relevant time scale. Such an endeavor is the rst step to a clinically applicable predictions of GBMs. Previous research has yielded models that adequately represent the development of GBMs, but they have not attempted to follow specic patient cases through the entire tumor process. Using the model utilized by Kostelich et al. [4], I will attempt to redress this deciency. In doing so, I will improve upon a family of models that can be used to approximate the time of development and/or structure evolution in GBMs. The eventual goal is to incorporate Magnetic Resonance Imaging (MRI) data into a parameterized model of GBMs in such a way that it can be used clinically to predict tumor growth and behavior. Furthermore, I hope to come to a denitive conclusion as to the accuracy of the Koteslich et al. model throughout the development of GBMs tumors.
ContributorsManning, Miles (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Preul, Mark (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
Description
Menstruation has been characterized as powerful, magical, and mysterious. Historically, it was believed menstrual blood could cure leprosy, warts, birthmarks, gout, goiter, hemorrhoids, epilepsy, worms, and headaches. Menstrual blood was used as a love charm and as a means to ward off river demons or evil spirits, and could be

Menstruation has been characterized as powerful, magical, and mysterious. Historically, it was believed menstrual blood could cure leprosy, warts, birthmarks, gout, goiter, hemorrhoids, epilepsy, worms, and headaches. Menstrual blood was used as a love charm and as a means to ward off river demons or evil spirits, and could be used to honor a god (DeLaney, Lupton, & Toth, 1988, pp.8-9). Contemporary studies reveal that women around the world continue to celebrate their power to create. The World Health Organization studied attitudes of women of all socioeconomic classes in 10 countries (Egypt, India, Indonesia, Jamaica, Pakistan, Philippines, United Kingdom, United States, Yugoslavia, Mexico, Korea) and found that most women saw menstruation as a positive event (DeLaney et al., 1988, p. 14). In a similar study, Mexican-American women perceived menstruation positively, as a process that "cleans" the body (DeLaney et al., 1988, p. 14).
ContributorsAzmat, Alia (Author) / Burleson, Mary (Thesis director) / Roberts, Nicole (Committee member) / Trevathan, Wenda (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2012-12
Description

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT,

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT, is an alternative to continuous ADT that improves the patient’s quality of life while testosterone levels recover between cycles. In this paper,we explore the response of intermittent ADT to metastasized prostate cancer by employing a previously clinical data validated mathematical model to new clinical data from patients undergoing Abiraterone therapy. This cell quota model, a system of ordinary differential equations constructed using Droop’s nutrient limiting theory, assumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR)cancer sub-populations. The two sub-populations rely on varying levels of intracellular androgen for growth, death and transformation. Due to the complexity of the model,we carry out sensitivity analyses to study the effect of certain parameters on their outputs, and to increase the identifiability of each patient’s unique parameter set. The model’s forecasting results show consistent accuracy for patients with sufficient data,which means the model could give useful information in practice, especially to decide whether an additional round of treatment would be effective.

ContributorsBennett, Justin Klark (Author) / Kuang, Yang (Thesis director) / Kostelich, Eric (Committee member) / Phan, Tin (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Glioblastoma Multiforme is a prevalent and aggressive brain tumor. It has an average 5-year survival rate of 6% and average survival time of 14 months. Using patient-specific MRI data from the Barrow Neurological Institute, this thesis investigates the impact of parameter manipulation on reaction-diffusion models for predicting and simulating glioblastoma

Glioblastoma Multiforme is a prevalent and aggressive brain tumor. It has an average 5-year survival rate of 6% and average survival time of 14 months. Using patient-specific MRI data from the Barrow Neurological Institute, this thesis investigates the impact of parameter manipulation on reaction-diffusion models for predicting and simulating glioblastoma growth. The study aims to explore key factors influencing tumor morphology and to contribute to enhancing prediction techniques for treatment.
ContributorsShayegan, Tara (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2024-05
Description
Since the 20th century, Arizona has undergone shifts in agricultural practices, driven by urban expansion and crop irrigation regulations. These changes present environmental challenges, altering atmospheric processes and influencing climate dynamics. Given the potential threats of climate change and drought on water availability for agriculture, further modifications in the agricultural

Since the 20th century, Arizona has undergone shifts in agricultural practices, driven by urban expansion and crop irrigation regulations. These changes present environmental challenges, altering atmospheric processes and influencing climate dynamics. Given the potential threats of climate change and drought on water availability for agriculture, further modifications in the agricultural landscape are expected. To understand these land use changes and their impact on carbon dynamics, our study quantified aboveground carbon storage in both cultivated and abandoned agricultural fields. To accomplish this, we employed Python and various geospatial libraries in Jupyter Notebook files, for thorough dataset assembly and visual, quantitative analysis. We focused on nine counties known for high cultivation levels, primarily located in the lower latitudes of Arizona. Our analysis investigated carbon dynamics across not only abandoned and actively cultivated croplands but also neighboring uncultivated land, for which we estimated the extent. Additionally, we compared these trends with those observed in developed land areas. The findings revealed a hierarchy in aboveground carbon storage, with currently cultivated lands having the lowest levels, followed by abandoned croplands and uncultivated wilderness. However, wilderness areas exhibited significant variation in carbon storage by county compared to cultivated and abandoned lands. Developed lands ranked highest in aboveground carbon storage, with the median value being the highest. Despite county-wide variations, abandoned croplands generally contained more carbon than currently cultivated areas, with adjacent wilderness lands containing even more than both. This trend suggests that cultivating croplands in the region reduces aboveground carbon stores, while abandonment allows for some replenishment, though only to a limited extent. Enhancing carbon stores in Arizona can be achieved through active restoration efforts on abandoned cropland. By promoting native plant regeneration and boosting aboveground carbon levels, these measures are crucial for improving carbon sequestration. We strongly advocate for implementing this step to facilitate the regrowth of native plants and enhance overall carbon storage in the region.
ContributorsGoodwin, Emily (Author) / Eikenberry, Steffen (Thesis director) / Kuang, Yang (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-05
Description
Copper demand is surging in the U.S. and around the world as countries embrace new forms of energy to combat climate change. But copper mining – while a key strategy to address supply shortages – can serve as a vehicle for injustice by imposing socio-ecological burdens for nearby communities. Due

Copper demand is surging in the U.S. and around the world as countries embrace new forms of energy to combat climate change. But copper mining – while a key strategy to address supply shortages – can serve as a vehicle for injustice by imposing socio-ecological burdens for nearby communities. Due to the growing demand for copper with resulting justice issues, more research is needed to evaluate governance for the mining sector using an environmental justice lens. The National Environmental Policy Act (NEPA) is a key environmental regulation that governs mining in the U.S. Therefore, I used a qualitative case study approach to examine how NEPA requirements shape engagement in public comment opportunities. I selected the Resolution Copper Mine as a case study because of its potential to support the energy transition but pose a significant dilemma for justice: the mine is anticipated to generate 25 percent of the U.S. copper demand each year but disturb lands that hold spiritual significance for Native American Tribes. I used the Institutional Analysis and Development (IAD) framework to analyze institutional dynamics and evaluate the NEPA process for public participation using a procedural justice lens. Drawing on interview data and document analysis, the results show that process rules such as a land exchange bill and the lengths of comment opportunities were among the key barriers for participation. Socioeconomic conditions of communities including access to social resources (i.e. access to internet and technical assistance) and institutional trust posed further barriers for participation. Hence, this study suggests that federal decision-makers should aim to better integrate procedural justice into the NEPA process.
ContributorsLewis, Sydney (Author) / Kellner, Elke (Thesis director) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05