Filtering by
- Creators: New College of Interdisciplinary Arts and Sciences
- Member of: Faculty and Staff

Social roles are thought to play an important role in determining the capacity for collective action in a community regarding the use of shared resources. Here we report on the results of a study using a behavioral experimental approach regarding the relationship between social roles and the performance of social-ecological systems. The computer-based irrigation experiment that was the basis of this study mimics the decisions faced by farmers in small-scale irrigation systems. In each of 20 rounds, which are analogous to growing seasons, participants face a two-stage commons dilemma. First they must decide how much to invest in the public infrastructure, e.g., canals and water diversion structures. Second, they must decide how much to extract from the water made available by that public infrastructure. Each round begins with a 60-second communication period before the players make their investment and extraction decisions. By analyzing the chat messages exchanged among participants during the communication stage of the experiment, we coded up to three roles per participant using the scheme of seven roles known to be important in the literature: leader, knowledge generator, connector, follower, moralist, enforcer, and observer. Our study supports the importance of certain social roles (e.g., connector) previously highlighted by several case study analyses. However, using qualitative comparative analysis we found that none of the individual roles was sufficient for groups to succeed, i.e., to reach a certain level of group production. Instead, we found that a combination of at least five roles was necessary for success. In addition, in the context of upstream-downstream asymmetry, we observed a pattern in which social roles assumed by participants tended to differ by their positions. Although our work generated some interesting insights, further research is needed to determine how robust our findings are to different action situations, such as biophysical context, social network, and resource uncertainty.

The structure and dynamics of ecosystems can affect the information available to resource users on the state of the common resource and the actions of other resource users. We present results from laboratory experiments that showed that the availability of information about the actions of other participants affected the level of cooperation. Since most participants in commons dilemmas can be classified as conditional cooperators, not having full information about the actions of others may affect their decisions. When participants had more information about others, there was a more rapid reduction of the resource in the first round of the experiment. When communication was allowed, limiting the information available made it harder to develop effective institutional arrangements. When communication was not allowed, there was a more rapid decline of performance in groups where information was limited. In sum, the results suggest that making information available to others can have an important impact on the conditional cooperation and the effectiveness of communication.

During the last 40 years evidence from systematic case study analysis and behavioral experiments have provided a comprehensive perspective on how communities can manage common resources in a sustainable way. The conventional theory based on selfish rational actors cannot explain empirical observations. A more comprehensive theoretical framework of human behavior is emerging that include concepts such as trust, conditional cooperation, other-regarding preferences, social norms, and reputation. The new behavioral perspective also demonstrates that behavioral responses depend on social and biophysical context.

Sustainability theory can help achieve desirable social-ecological states by generalizing lessons across contexts and improving the design of sustainability interventions. To accomplish these goals, we argue that theory in sustainability science must (1) explain the emergence and persistence of social-ecological states, (2) account for endogenous cultural change, (3) incorporate cooperation dynamics, and (4) address the complexities of multilevel social-ecological interactions. We suggest that cultural evolutionary theory broadly, and cultural multilevel selection in particular, can improve on these fronts. We outline a multilevel evolutionary framework for describing social-ecological change and detail how multilevel cooperative dynamics can determine outcomes in environmental dilemmas. We show how this framework complements existing sustainability frameworks with a description of the emergence and persistence of sustainable institutions and behavior, a means to generalize causal patterns across social-ecological contexts, and a heuristic for designing and evaluating effective sustainability interventions. We support these assertions with case examples from developed and developing countries in which we track cooperative change at multiple levels of social organization as they impact social-ecological outcomes. Finally, we make suggestions for further theoretical development, empirical testing, and application.

We use an agent-based model to analyze the effects of spatial heterogeneity and agents’ mobility on social-ecological outcomes. Our model is a stylized representation of a dynamic population of agents moving and harvesting a renewable resource. Cooperators (agents who harvest an amount close to the maximum sustainable yield) and selfish agents (those who harvest an amount greater than the sustainable yield) are simulated in the model. Three indicators of the outcomes of the system are analyzed: the number of settlements, the resource level, and the proportion of cooperators in the population. Our paper adds a more realistic approach to previous studies on the evolution of cooperation by considering a social-ecological system in which agents move in a landscape to harvest a renewable resource. Our results conclude that resource dynamics play an important role when studying levels of cooperation and resource use. Our simulations show that the agents’ mobility significantly affects the outcomes of the system. This response is nonlinear and very sensible to the type of spatial distribution of the resource richness. In our simulations, better outcomes of long-term sustainability of the resource are obtained with moderate agent mobility and cooperation is enhanced in harsh environments with low resource level in which cooperative groups have natural boundaries fostered by agents’ low mobility.

Recently, there has been an increased interest in using behavioral experiments to study hypotheses on the governance of social-ecological systems. A diversity of software tools are used to implement such experiments. We evaluated various publicly available platforms that could be used in research and education on the governance of social-ecological systems. The aims of the various platforms are distinct, and this is noticeable in the differences in their user-friendliness and their adaptability to novel research questions. The more easily accessible platforms are useful for prototyping experiments and for educational purposes to illustrate theoretical concepts. To advance novel research aims, more elaborate programming experience is required to either implement an experiment from scratch or adjust existing experimental software. There is no ideal platform best suited for all possible use cases, but we have provided a menu of options and their associated trade-offs.

Allowing resource users to communicate in behavioural experiments on commons dilemmas increases the level of cooperation. In actual common pool resource dilemmas in the real world, communication is costly, which is an important detail missing from most typical experiments. We conducted experiments where participants must give up harvesting opportunities to communicate. The constrained communication treatment is compared with the effect of limited information about the state of the resource and the actions of the other participants. We find that despite making communication costly, performance of groups improves in all treatments with communication. We also find that constraining communication has a more significant effect than limiting information on the performance of groups.

Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione), a high-value ketocarotenoid with a broad range of applications in food, feed, nutraceutical, and pharmaceutical industries, has been gaining great attention from science and the public in recent years. The green microalgae Haematococcus pluvialis and Chlorella zofingiensis represent the most promising producers of natural astaxanthin. Although H. pluvialis possesses the highest intracellular astaxanthin content and is now believed to be a good producer of astaxanthin, it has intrinsic shortcomings such as slow growth rate, low biomass yield, and a high light requirement. In contrast, C. zofingiensis grows fast phototrophically, heterotrophically and mixtrophically, is easy to be cultured and scaled up both indoors and outdoors, and can achieve ultrahigh cell densities. These robust biotechnological traits provide C. zofingiensis with high potential to be a better organism than H. pluvialis for mass astaxanthin production. This review aims to provide an overview of the biology and industrial potential of C. zofingiensis as an alternative astaxanthin producer. The path forward for further expansion of the astaxanthin production from C. zofingiensis with respect to both challenges and opportunities is also discussed.

Experiments have made important contributions to our understanding of human behavior, including behavior relevant for understanding social-ecological systems. When there is a conflict between individual and group interests in social-ecological systems, social dilemmas occur. From the many types of social-dilemma formulations that are used to study collective action, common-pool resource and public-good dilemmas are most relevant for social-ecological systems. Experimental studies of both common-pool resource and public-good dilemmas have shown that many predictions based on the conventional theory of collective action, which assumes rational, self-interested behavior, do not hold. More cooperation occurs than predicted (Ledyard 1995), “cheap talk” increases cooperation (Ostrom 2006), and participants are willing to invest in sanctioning free riders (Yamagishi 1986, Ostrom et al. 1992, Fehr and Gächter 2000, Chaudhuri 2011). Experiments have also demonstrated a diversity of motivations, which affect individual decisions about cooperation and sanctioning (see Fehr and Fischbacher 2002 and Sobel 2005 for reviews, and Bowles 2008 for policy implications).

Modern biology and epidemiology have become more and more driven by the need of mathematical models and theory to elucidate general phenomena arising from the complexity of interactions on the numerous spatial, temporal, and hierarchical scales at which biological systems operate and diseases spread. Epidemic modeling and study of disease spread such as gonorrhea, HIV/AIDS, BSE, foot and mouth disease, measles, and rubella have had an impact on public health policy around the world which includes the United Kingdom, The Netherlands, Canada, and the United States. A wide variety of modeling approaches are involved in building up suitable models. Ordinary differential equation models, partial differential equation models, delay differential equation models, stochastic differential equation models, difference equation models, and nonautonomous models are examples of modeling approaches that are useful and capable of providing applicable strategies for the coexistence and conservation of endangered species, to prevent the overexploitation of natural resources, to control disease’s outbreak, and to make optimal dosing polices for the drug administration, and so forth.