Matching Items (3)
Filtering by

Clear all filters

Description

Various biologically inspired flow field designs of the gas distributor (interconnector) have been designed and simulated. Their performance using Nafion-212 with humidified H2 and Air at 80 °C with the ANSYS Fluent Fuel Cell module software was evaluated. Novel interdigitated designs were optimized by obeying biologically inspired branching rules. These

Various biologically inspired flow field designs of the gas distributor (interconnector) have been designed and simulated. Their performance using Nafion-212 with humidified H2 and Air at 80 °C with the ANSYS Fluent Fuel Cell module software was evaluated. Novel interdigitated designs were optimized by obeying biologically inspired branching rules. These rules allow for more mathematically formal descriptions of flow field designs, enabling relatively simple optimization. The channel to land ratio was kept equivalent between designs with typical values between 0.8 and 1.0. The pressure drop and the current density distribution were monitored for each design on both anode and cathode sides. The most promising designs are expected to exhibit lower pressure drop however, low pressure drop can also be an indication of potential water flooding at higher operating current density. A biologically inspired interdigitated design with 9 inlet channels exhibited reduced pressure drop and improved current density distribution compared to all other interdigitated designs evaluated in this study. The simulated fuel cell performance data at ambient pressure with humidified H2 and air compares well with the experimental data using a single serpentine flow field design.

ContributorsArvay, Adam (Author) / French, Jason (Author) / Wang, Jui-Chieh (Author) / Peng, Xihong (Author) / Kannan, Arunachala Mada (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2015
Description

Nanomaterials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel

Nanomaterials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nanomaterials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nanomaterials is vital for achieving the required efficiency, cycle life, and sustainability in various technological applications. Nanomaterials with specific size and shape such as nanotubes, nanofibers, nanowires, nanocones, nanocomposites, nanorods, nanoislands, nanoparticles, nanospheres, and nanoshells to provide unique properties can be synthesized by tuning the process conditions.

ContributorsSrinivasan, Sesha (Author) / Kannan, Arunachala Mada (Author) / Kothurkar, Nikhil (Author) / Khalil, Yehia (Author) / Kuravi, Sarada (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2015-11-23
Description

Zeolitic Imidazolate Frameworks (ZIFs) are one of the potential candidates as highly conducting networks with surface area with a possibility to be used as catalyst support. In the present study, highly active state-of-the-art Pt-NCNTFs catalyst was synthesized by pyrolyzing ZIF-67 along with Pt precursor under flowing Ar-H2 (90-10 %) gas

Zeolitic Imidazolate Frameworks (ZIFs) are one of the potential candidates as highly conducting networks with surface area with a possibility to be used as catalyst support. In the present study, highly active state-of-the-art Pt-NCNTFs catalyst was synthesized by pyrolyzing ZIF-67 along with Pt precursor under flowing Ar-H2 (90-10 %) gas at 700 °C. XRD analysis indicated the formation of Pt-Co alloy on the surface of the nanostructured catalyst support. The high resolution TEM examination showed the particle size range of 7 to 10 nm. Proton exchange membrane fuel cell performance was evaluated by fabricating membrane electrode assemblies using Nafion-212 electrolyte using H2/O2 gases (100 % RH) at various temperatures. The peak power density of 630 mW.cm2 was obtained with Pt-NCNTFs cathode catalyst and commercial Pt/C anode catalyst at 70 °C at ambient pressure.

Created2017-11-16