Matching Items (45)
Filtering by

Clear all filters

Description

The goal of this thesis project was to develop a digital, quantitative assessment of executive functioning skills and problem solving abilities. This assessment was intended to serve as a relative measure of executive functions and problem solving abilities rather than a diagnosis; the main purpose was to identify areas for

The goal of this thesis project was to develop a digital, quantitative assessment of executive functioning skills and problem solving abilities. This assessment was intended to serve as a relative measure of executive functions and problem solving abilities rather than a diagnosis; the main purpose was to identify areas for improvement and provide individuals with an understanding of their current ability levels. To achieve this goal, we developed a web-based assessment through Unity that used gamelike modifications of Flanker, Antisaccade, Embedded Images, Raven’s Matrices, and Color / Order Memory tasks. Participants were invited to access the assessment at www.ExecutiveFunctionLevel.com to complete the assessment and their results were analyzed. The findings of this project indicate that these tasks accurately represent executive functioning skills, the Flanker Effect is present in the collected data, and there is a notable correlation between each of the REFLEX challenges. In conclusion, we successfully developed a short, gamelike, online assessment of executive functioning and problem solving abilities. Future developments of REFLEX could look into immediate scoring, developing a mobile application, and externally validating the results.

ContributorsAnderson, Gabriel (Co-author) / Anderson, Mikayla (Co-author) / Brewer, Gene (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Johnson, Mina (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The goal of this thesis project was to develop a digital, quantitative assessment of executive functioning skills and problem solving abilities. This assessment was intended to serve as a relative measure of executive functions and problem solving abilities rather than a diagnosis; the main purpose was to identify areas for

The goal of this thesis project was to develop a digital, quantitative assessment of executive functioning skills and problem solving abilities. This assessment was intended to serve as a relative measure of executive functions and problem solving abilities rather than a diagnosis; the main purpose was to identify areas for improvement and provide individuals with an understanding of their current ability levels. To achieve this goal, we developed a web-based assessment through Unity that used gamelike modifications of Flanker, Antisaccade, Embedded Images, Raven’s Matrices, and Color / Order Memory tasks. Participants were invited to access the assessment at www.ExecutiveFunctionLevel.com to complete the assessment and their results were analyzed. The findings of this project indicate that these tasks accurately represent executive functioning skills, the Flanker Effect is present in the collected data, and there is a notable correlation between each of the REFLEX challenges. In conclusion, we successfully developed a short, gamelike, online assessment of executive functioning and problem solving abilities. Future developments of REFLEX could look into immediate scoring, developing a mobile application, and externally validating the results.

ContributorsAnderson, Mikayla (Co-author) / Anderson, Gabriel (Co-author) / Brewer, Gene (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Johnson, Mina (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis explores the potential for software to act as an educational experience for engineers who are learning system dynamics and controls. The specific focus is a spring-mass-damper system. First, a brief introduction of the spring-mass-damper system is given, followed by a review of the background and prior work concerning

This thesis explores the potential for software to act as an educational experience for engineers who are learning system dynamics and controls. The specific focus is a spring-mass-damper system. First, a brief introduction of the spring-mass-damper system is given, followed by a review of the background and prior work concerning this topic. Then, the methodology and main approaches of the system are explained, as well as a more technical overview of the program. Lastly, a conclusion and discussion of potential future work is covered. The project was found to be useful by several engineers who tested it. While there is still plenty of functionality to add, it is a promising first attempt at teaching engineers through software development.

ContributorsRobbins, Alexander Kalani (Author) / Kobayashi, Yoshihiro (Thesis director) / Benson, David (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together.

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together. Non-Euclidean environmental puzzle games have existed for around 10 years in various forms, short environmental puzzle games in virtual reality have come into existence in around the past five years, and non-Euclidean virtual reality exists mainly as non-video game short demos from the past few years. This project seeks to be able to bring these components together to create a proof of concept for how a game like this should function, particularly the integration of non-Euclidean virtual reality in the context of a video game. To do this, a Unity package which uses a custom system for creating worlds in a non-Euclidean way rather than Unity’s built-in components such as for transforms, collisions, and rendering was used. This was used in conjunction with the SteamVR implementation with Unity to create a cohesive and immersive player experience.

ContributorsVerhagen, Daniel William (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Procedural content generation refers to the creation of data algorithmically using controlled randomness. These algorithms can be used to generate complex environments and geological formations as opposed to manually creating environments, using photogrammetry, or other means. Geological formations and the surrounding terrain can be created using noise based algorithms such

Procedural content generation refers to the creation of data algorithmically using controlled randomness. These algorithms can be used to generate complex environments and geological formations as opposed to manually creating environments, using photogrammetry, or other means. Geological formations and the surrounding terrain can be created using noise based algorithms such as Perlin noise. However, interpreting noise in this manner has a number of challenges due to the pseudo-random nature of noise. We will discuss how to generate noise, how to render noise, and the challenges in interpreting noise.

ContributorsLi, Michael L (Author) / Hansford, Dianne (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
For my thesis, I developed an educational video game titled Cannon Quest. Based around a thought experiment proposed in 1687 by Sir Isaac Newton, Cannon Quest allows players to explore a miniature, 2-dimensional solar system using real physics and gravity. My principle goal was to create an interactive model of

For my thesis, I developed an educational video game titled Cannon Quest. Based around a thought experiment proposed in 1687 by Sir Isaac Newton, Cannon Quest allows players to explore a miniature, 2-dimensional solar system using real physics and gravity. My principle goal was to create an interactive model of orbital motion, with some game/simulation elements. This allows players who are totally unfamiliar with orbital mechanics to gain at least a rudimentary understanding simply by playing the game. While the educational model was my primary goal, care was taken to ensure that Cannon Quest functions as a playable simulator. I developed my own user interface (UI), control setup, and art, as well as integrating music and animation for a more complete user experience. I also spent a significant amount of time balancing the gameplay aspects with the real physics, occasionally sacrificing reality where needed to ensure a better experience. The resulting product is simple and straightforward, while retaining much of the nuances of actual orbital motion. I also developed a website to host Cannon Quest, and better direct my playtesters from a single hub. You can visit this website at www.cannonquest.carrd.co. Alternatively, you can visit https://possiblymatthew.itch.io/cannon-quest or https://github.com/matthewbenjamin22/Cannon-Quest to play the game.
ContributorsBenjamin, Matthew (Author) / Kobayashi, Yoshihiro (Thesis director) / Feng, Xuerong (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2022-05
Description
The goal of this project was to determine if the chosen research and testing method would result in a game where students would practice math in the best way. This was done by creating a video game using Unity that followed key principles for designing a math game and for

The goal of this project was to determine if the chosen research and testing method would result in a game where students would practice math in the best way. This was done by creating a video game using Unity that followed key principles for designing a math game and for how students should practice math in general. Testing was done on participants to determine the strategies they used in order to play the game and these strategies were then defined and categorized based on their effectiveness and how well they met the learning principles. Also, the participants were asked a before and after question to determine if the game improved their overall attitude towards math to make sure the game was helping them learn and was not a hindrance. There was an overall increase in the participants’ feelings towards math after playing the game as well as beneficial strategies, so the research and testing method was overall a success.
ContributorsVaillancourt, Tyler (Author) / Kobayashi, Yoshihiro (Thesis director) / Amresh, Ashish (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

Nowadays, kids are exposed to technology at an incredibly early age. According to a study by YouGov in the United Kingdom, 88% of 12-year-olds are entrusted with their own devices and 85% of children at age 6 have access to a tablet at home (YouGov). In the US, according to

Nowadays, kids are exposed to technology at an incredibly early age. According to a study by YouGov in the United Kingdom, 88% of 12-year-olds are entrusted with their own devices and 85% of children at age 6 have access to a tablet at home (YouGov). In the US, according to MarketingProfs 75% of children 8 and under have access to some type of smart device. In an ever-growing technological world, it is important to make sure that kids are enjoying entertainment that enhances their growth and protects them from inappropriate content (Nanji). I wanted to create a browser game that explains the importance of Security in a colorful, fun environment with a friendly playable character. The game I created is a 2D platformer in which the player learns about the importance of passwords and keeping them secure.

ContributorsMichalik, Jacob (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description

This paper explores the inner workings of algorithms that computers may use to play Chess. First, we discuss the classical Alpha-Beta algorithm and several improvements, including Quiescence Search, Transposition Tables, and more. Next, we examine the state-of-the-art Monte Carlo Tree Search algorithm and relevant optimizations. After that, we consider a

This paper explores the inner workings of algorithms that computers may use to play Chess. First, we discuss the classical Alpha-Beta algorithm and several improvements, including Quiescence Search, Transposition Tables, and more. Next, we examine the state-of-the-art Monte Carlo Tree Search algorithm and relevant optimizations. After that, we consider a recent algorithm that transforms Alpha-Beta into a “Rollout” search, blending it with Monte Carlo Tree Search under the rollout paradigm. We then discuss our C++ Chess Engine, Homura, and explain its implementation of a hybrid algorithm combining Alpha-Beta with MCTS. Finally, we show that Homura can play master-level Chess at a strength currently exceeding that of our backtracking Alpha-Beta.

ContributorsMoore, Evan (Author) / Kobayashi, Yoshihiro (Thesis director) / Kambhampati, Subbarao (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
This paper covers the research details, motivation for, and process of creating a virtual reality (VR) poverty simulation and conventional paper simulation, and testing both for comparison. This was done for a Spring 2024 Barrett Honors College thesis. The resulting simulation is a VR resource scavenging game for one player

This paper covers the research details, motivation for, and process of creating a virtual reality (VR) poverty simulation and conventional paper simulation, and testing both for comparison. This was done for a Spring 2024 Barrett Honors College thesis. The resulting simulation is a VR resource scavenging game for one player set in the forests of Russian Karelia, rendered in a PSX style, simulating the resource scarcity of a rural hunter. This simulation was compared against a paper-based simulation of a rural Appalachian family to see if it could be found to be comparable in expanding the understanding of poverty for testers.
ContributorsReza, Sameer (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05