Matching Items (173)
Filtering by
- Creators: Li, Baoxin
- Member of: ASU Electronic Theses and Dissertations

Description
Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These challenges can be addressed by integrating sustainability grand challenges into engineering curriculum.
Two main strategies have emerged for integrating sustainability grand challenges. In the stand-alone course method, engineering programs establish one or two distinct courses that address sustainability grand challenges in depth. In the module method, engineering programs integrate sustainability grand challenges throughout existing courses. Neither method has been assessed in the literature.
This thesis aimed to develop sustainability modules, to create methods for evaluating the modules’ effectiveness on student cognitive and affective outcomes, to create methods for evaluating students’ cumulative sustainability knowledge, and to evaluate the stand-alone course method to integrate sustainability grand challenges into engineering curricula via active and experiential learning.
The Sustainable Metrics Module for teaching sustainability concepts and engaging and motivating diverse sets of students revealed that the activity portion of the module had the greatest impact on learning outcome retention.
The Game Design Module addressed methods for assessing student mastery of course content with student-developed games indicated that using board game design improved student performance and increased student satisfaction.
Evaluation of senior design capstone projects via novel comprehensive rubric to assess sustainability learned over students’ curriculum revealed that students’ performance is primarily driven by their instructor’s expectations. The rubric provided a universal tool for assessing students’ sustainability knowledge and could also be applied to sustainability-focused projects.
With this in mind, engineering educators should pursue modules that connect sustainability grand challenges to engineering concepts, because student performance improves and students report higher satisfaction. Instructors should utilize pedagogies that engage diverse students and impact concept retention, such as active and experiential learning. When evaluating the impact of sustainability in the curriculum, innovative assessment methods should be employed to understand student mastery and application of course concepts and the impacts that topics and experiences have on student satisfaction.
Two main strategies have emerged for integrating sustainability grand challenges. In the stand-alone course method, engineering programs establish one or two distinct courses that address sustainability grand challenges in depth. In the module method, engineering programs integrate sustainability grand challenges throughout existing courses. Neither method has been assessed in the literature.
This thesis aimed to develop sustainability modules, to create methods for evaluating the modules’ effectiveness on student cognitive and affective outcomes, to create methods for evaluating students’ cumulative sustainability knowledge, and to evaluate the stand-alone course method to integrate sustainability grand challenges into engineering curricula via active and experiential learning.
The Sustainable Metrics Module for teaching sustainability concepts and engaging and motivating diverse sets of students revealed that the activity portion of the module had the greatest impact on learning outcome retention.
The Game Design Module addressed methods for assessing student mastery of course content with student-developed games indicated that using board game design improved student performance and increased student satisfaction.
Evaluation of senior design capstone projects via novel comprehensive rubric to assess sustainability learned over students’ curriculum revealed that students’ performance is primarily driven by their instructor’s expectations. The rubric provided a universal tool for assessing students’ sustainability knowledge and could also be applied to sustainability-focused projects.
With this in mind, engineering educators should pursue modules that connect sustainability grand challenges to engineering concepts, because student performance improves and students report higher satisfaction. Instructors should utilize pedagogies that engage diverse students and impact concept retention, such as active and experiential learning. When evaluating the impact of sustainability in the curriculum, innovative assessment methods should be employed to understand student mastery and application of course concepts and the impacts that topics and experiences have on student satisfaction.
ContributorsAntaya, Claire Louise (Author) / Landis, Amy E. (Thesis advisor) / Parrish, Kristen (Thesis advisor) / Bilec, Melissa M (Committee member) / Besterfield-Sacre, Mary E (Committee member) / Allenby, Braden R. (Committee member) / Arizona State University (Publisher)
Created2015

Description
With the advent of Internet, the data being added online is increasing at enormous rate. Though search engines are using IR techniques to facilitate the search requests from users, the results are not effective towards the search query of the user. The search engine user has to go through certain webpages before getting at the webpage he/she wanted. This problem of Information Overload can be solved using Automatic Text Summarization. Summarization is a process of obtaining at abridged version of documents so that user can have a quick view to understand what exactly the document is about. Email threads from W3C are used in this system. Apart from common IR features like Term Frequency, Inverse Document Frequency, Term Rank, a variation of page rank based on graph model, which can cluster the words with respective to word ambiguity, is implemented. Term Rank also considers the possibility of co-occurrence of words with the corpus and evaluates the rank of the word accordingly. Sentences of email threads are ranked as per features and summaries are generated. System implemented the concept of pyramid evaluation in content selection. The system can be considered as a framework for Unsupervised Learning in text summarization.
ContributorsNadella, Sravan (Author) / Davulcu, Hasan (Thesis advisor) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2015

Description
Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed to achieve a superior performance in several areas including energy consumption and indoor environmental quality (IEQ). The primary objectives of this study are to investigate the performance of LEED certified facilities in terms of energy consumption and occupant satisfaction with IEQ, and introduce a framework to assess the performance of LEED certified buildings.
This thesis attempts to achieve the research objectives by examining the LEED certified buildings on the Arizona State University (ASU) campus in Tempe, AZ, from two complementary perspectives: the Macro-level and the Micro-level. Heating, cooling, and electricity data were collected from the LEED-certified buildings on campus, and their energy use intensity was calculated in order to investigate the buildings' actual energy performance. Additionally, IEQ occupant satisfaction surveys were used to investigate users' satisfaction with the space layout, space furniture, thermal comfort, indoor air quality, lighting level, acoustic quality, water efficiency, cleanliness and maintenance of the facilities they occupy.
From a Macro-level perspective, the results suggest ASU LEED buildings consume less energy than regional counterparts, and exhibit higher occupant satisfaction than national counterparts. The occupant satisfaction results are in line with the literature on LEED buildings, whereas the energy results contribute to the inconclusive body of knowledge on energy performance improvements linked to LEED certification. From a Micro-level perspective, data analysis suggest an inconsistency between the LEED points earned for the Energy & Atmosphere and IEQ categories, on one hand, and the respective levels of energy consumption and occupant satisfaction on the other hand. Accordingly, this study showcases the variation in the performance results when approached from different perspectives. This contribution highlights the need to consider the Macro-level and Micro-level assessments in tandem, and assess LEED building performance from these two distinct but complementary perspectives in order to develop a more comprehensive understanding of the actual building performance.
This thesis attempts to achieve the research objectives by examining the LEED certified buildings on the Arizona State University (ASU) campus in Tempe, AZ, from two complementary perspectives: the Macro-level and the Micro-level. Heating, cooling, and electricity data were collected from the LEED-certified buildings on campus, and their energy use intensity was calculated in order to investigate the buildings' actual energy performance. Additionally, IEQ occupant satisfaction surveys were used to investigate users' satisfaction with the space layout, space furniture, thermal comfort, indoor air quality, lighting level, acoustic quality, water efficiency, cleanliness and maintenance of the facilities they occupy.
From a Macro-level perspective, the results suggest ASU LEED buildings consume less energy than regional counterparts, and exhibit higher occupant satisfaction than national counterparts. The occupant satisfaction results are in line with the literature on LEED buildings, whereas the energy results contribute to the inconclusive body of knowledge on energy performance improvements linked to LEED certification. From a Micro-level perspective, data analysis suggest an inconsistency between the LEED points earned for the Energy & Atmosphere and IEQ categories, on one hand, and the respective levels of energy consumption and occupant satisfaction on the other hand. Accordingly, this study showcases the variation in the performance results when approached from different perspectives. This contribution highlights the need to consider the Macro-level and Micro-level assessments in tandem, and assess LEED building performance from these two distinct but complementary perspectives in order to develop a more comprehensive understanding of the actual building performance.
ContributorsChokor, Abbas (Author) / El Asmar, Mounir (Thesis advisor) / Chong, Oswald (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2015

Description
One of the most remarkable outcomes resulting from the evolution of the web into Web 2.0, has been the propelling of blogging into a widely adopted and globally accepted phenomenon. While the unprecedented growth of the Blogosphere has added diversity and enriched the media, it has also added complexity. To cope with the relentless expansion, many enthusiastic bloggers have embarked on voluntarily writing, tagging, labeling, and cataloguing their posts in hopes of reaching the widest possible audience. Unbeknown to them, this reaching-for-others process triggers the generation of a new kind of collective wisdom, a result of shared collaboration, and the exchange of ideas, purpose, and objectives, through the formation of associations, links, and relations. Mastering an understanding of the Blogosphere can greatly help facilitate the needs of the ever growing number of these users, as well as producers, service providers, and advertisers into facilitation of the categorization and navigation of this vast environment. This work explores a novel method to leverage the collective wisdom from the infused label space for blog search and discovery. The work demonstrates that the wisdom space can provide a most unique and desirable framework to which to discover the highly sought after background information that could aid in the building of classifiers. This work incorporates this insight into the construction of a better clustering of blogs which boosts the performance of classifiers for identifying more relevant labels for blogs, and offers a mechanism that can be incorporated into replacing spurious labels and mislabels in a multi-labeled space.
ContributorsGalan, Magdiel F (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015

Description
Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up 70-90 percent (by count) of all projects in the industrial construction sector, the planning of these project varies greatly, and that a consistent definition of “small industrial project” did not exist. This dissertation summarizes the motivations and efforts to develop a non-proprietary front end planning tool specifically for small industrial projects, namely the Project Definition Rating Index (PDRI) for Small Industrial Projects. The author was a member of Construction Industry Institute (CII) Research Team 314, who was tasked with developing the tool in May of 2013. The author, together with the research team, reviewed, scrutinized and adapted an existing industrial-focused FEP tool, the PDRI for Industrial Projects, and other resources to develop a set of 41 specific elements relevant to the planning of small industrial projects. The author supported the facilitation of five separate industry workshops where 65 industry professionals evaluated the element descriptions, and provided element prioritization data that was statistically analyzed and used to develop a weighted score sheet that corresponds to the element descriptions. The tool was tested on 54 completed and in-progress projects, the author’s analysis of which showed that small industrial projects with greater scope definition (based on the tool’s scoring scheme) outperformed projects with lesser scope definition regarding cost performance, schedule performance, change performance, financial performance, and customer satisfaction. Moreover, the author found that users of the tool on in-progress projects overwhelmingly agreed that the tool added value to their projects in a timeframe and manner consistent with their needs, and that they would continue using the tool in the future. The author also developed an index-based selection guide to aid PDRI users in choosing the appropriate tool for use on an industrial project based on distinguishing project size with indicators of project complexity. The final results of the author’s research provide several contributions to the front end planning, small projects, and project complexity bodies of knowledge.
ContributorsCollins, Wesley A (Author) / Parrish, Kristen (Thesis advisor) / Gibson, Jr., G. Edward (Committee member) / El Asmar, Mounir (Committee member) / Arizona State University (Publisher)
Created2015

Description
In the burgeoning field of sustainability, there is a pressing need for healthcare to understand the increased environmental and economic impact of healthcare products and services. The overall aim of this dissertation is to assess the sustainability of commonly used medical products, devices, and services as well as to identify strategies for making easy, low cost changes that result in environmental and economic savings for healthcare systems. Life cycle environmental assessments (LCAs) and life cycle costing assessments (LCCAs) will be used to quantitatively evaluate life-cycle scenarios for commonly utilized products, devices, and services. This dissertation will focus on several strategic and high impact areas that have potential for significant life-cycle environmental and economic improvements: 1) increased deployment of reprocessed medical devices in favor of disposable medical devices, 2) innovations to expand the use of biopolymers in healthcare materials and devices, and 3) assess the environmental and economic impacts of various medical devices and services in order to give healthcare administrators and employees the ability to make more informed decisions about the sustainability of their utilized materials, devices, and services.
ContributorsUnger, Scott (Author) / Landis, Amy E. (Thesis advisor) / Bilec, Melissa (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2015

Description
Blur is an important attribute in the study and modeling of the human visual system. In this work, 3D blur discrimination experiments are conducted to measure the just noticeable additional blur required to differentiate a target blur from the reference blur level. The past studies on blur discrimination have measured the sensitivity of the human visual system to blur using 2D test patterns. In this dissertation, subjective tests are performed to measure blur discrimination thresholds using stereoscopic 3D test patterns. The results of this study indicate that, in the symmetric stereo viewing case, binocular disparity does not affect the blur discrimination thresholds for the selected 3D test patterns. In the asymmetric viewing case, the blur discrimination thresholds decreased and the decrease in threshold values is found to be dominated by the eye observing the higher blur.
The second part of the dissertation focuses on texture granularity in the context of 2D images. A texture granularity database referred to as GranTEX, consisting of textures with varying granularity levels is constructed. A subjective study is conducted to measure the perceived granularity level of textures present in the GranTEX database. An objective index that automatically measures the perceived granularity level of textures is also presented. It is shown that the proposed granularity metric correlates well with the subjective granularity scores and outperforms the other methods presented in the literature.
A subjective study is conducted to assess the effect of compression on textures with varying degrees of granularity. A logarithmic function model is proposed as a fit to the subjective test data. It is demonstrated that the proposed model can be used for rate-distortion control by allowing the automatic selection of the needed compression ratio for a target visual quality. The proposed model can also be used for visual quality assessment by providing a measure of the visual quality for a target compression ratio.
The effect of texture granularity on the quality of synthesized textures is studied. A subjective study is presented to assess the quality of synthesized textures with varying levels of texture granularity using different types of texture synthesis methods. This work also proposes a reduced-reference visual quality index referred to as delta texture granularity index for assessing the visual quality of synthesized textures.
The second part of the dissertation focuses on texture granularity in the context of 2D images. A texture granularity database referred to as GranTEX, consisting of textures with varying granularity levels is constructed. A subjective study is conducted to measure the perceived granularity level of textures present in the GranTEX database. An objective index that automatically measures the perceived granularity level of textures is also presented. It is shown that the proposed granularity metric correlates well with the subjective granularity scores and outperforms the other methods presented in the literature.
A subjective study is conducted to assess the effect of compression on textures with varying degrees of granularity. A logarithmic function model is proposed as a fit to the subjective test data. It is demonstrated that the proposed model can be used for rate-distortion control by allowing the automatic selection of the needed compression ratio for a target visual quality. The proposed model can also be used for visual quality assessment by providing a measure of the visual quality for a target compression ratio.
The effect of texture granularity on the quality of synthesized textures is studied. A subjective study is presented to assess the quality of synthesized textures with varying levels of texture granularity using different types of texture synthesis methods. This work also proposes a reduced-reference visual quality index referred to as delta texture granularity index for assessing the visual quality of synthesized textures.
ContributorsSubedar, Mahesh M (Author) / Karam, Lina (Thesis advisor) / Abousleman, Glen (Committee member) / Li, Baoxin (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2015

Description
Understanding the complexity of temporal and spatial characteristics of gene expression over brain development is one of the crucial research topics in neuroscience. An accurate description of the locations and expression status of relative genes requires extensive experiment resources. The Allen Developing Mouse Brain Atlas provides a large number of in situ hybridization (ISH) images of gene expression over seven different mouse brain developmental stages. Studying mouse brain models helps us understand the gene expressions in human brains. This atlas collects about thousands of genes and now they are manually annotated by biologists. Due to the high labor cost of manual annotation, investigating an efficient approach to perform automated gene expression annotation on mouse brain images becomes necessary. In this thesis, a novel efficient approach based on machine learning framework is proposed. Features are extracted from raw brain images, and both binary classification and multi-class classification models are built with some supervised learning methods. To generate features, one of the most adopted methods in current research effort is to apply the bag-of-words (BoW) algorithm. However, both the efficiency and the accuracy of BoW are not outstanding when dealing with large-scale data. Thus, an augmented sparse coding method, which is called Stochastic Coordinate Coding, is adopted to generate high-level features in this thesis. In addition, a new multi-label classification model is proposed in this thesis. Label hierarchy is built based on the given brain ontology structure. Experiments have been conducted on the atlas and the results show that this approach is efficient and classifies the images with a relatively higher accuracy.
ContributorsZhao, Xinlin (Author) / Ye, Jieping (Thesis advisor) / Wang, Yalin (Thesis advisor) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2016

Description
The quality of real-world visual content is typically impaired by many factors including image noise and blur. Detecting and analyzing these impairments are important steps for multiple computer vision tasks. This work focuses on perceptual-based locally adaptive noise and blur detection and their application to image restoration.
In the context of noise detection, this work proposes perceptual-based full-reference and no-reference objective image quality metrics by integrating perceptually weighted local noise into a probability summation model. Results are reported on both the LIVE and TID2008 databases. The proposed metrics achieve consistently a good performance across noise types and across databases as compared to many of the best very recent quality metrics. The proposed metrics are able to predict with high accuracy the relative amount of perceived noise in images of different content.
In the context of blur detection, existing approaches are either computationally costly or cannot perform reliably when dealing with the spatially-varying nature of the defocus blur. In addition, many existing approaches do not take human perception into account. This work proposes a blur detection algorithm that is capable of detecting and quantifying the level of spatially-varying blur by integrating directional edge spread calculation, probability of blur detection and local probability summation. The proposed method generates a blur map indicating the relative amount of perceived local blurriness. In order to detect the flat
ear flat regions that do not contribute to perceivable blur, a perceptual model based on the Just Noticeable Difference (JND) is further integrated in the proposed blur detection algorithm to generate perceptually significant blur maps. We compare our proposed method with six other state-of-the-art blur detection methods. Experimental results show that the proposed method performs the best both visually and quantitatively.
This work further investigates the application of the proposed blur detection methods to image deblurring. Two selective perceptual-based image deblurring frameworks are proposed, to improve the image deblurring results and to reduce the restoration artifacts. In addition, an edge-enhanced super resolution algorithm is proposed, and is shown to achieve better reconstructed results for the edge regions.
In the context of noise detection, this work proposes perceptual-based full-reference and no-reference objective image quality metrics by integrating perceptually weighted local noise into a probability summation model. Results are reported on both the LIVE and TID2008 databases. The proposed metrics achieve consistently a good performance across noise types and across databases as compared to many of the best very recent quality metrics. The proposed metrics are able to predict with high accuracy the relative amount of perceived noise in images of different content.
In the context of blur detection, existing approaches are either computationally costly or cannot perform reliably when dealing with the spatially-varying nature of the defocus blur. In addition, many existing approaches do not take human perception into account. This work proposes a blur detection algorithm that is capable of detecting and quantifying the level of spatially-varying blur by integrating directional edge spread calculation, probability of blur detection and local probability summation. The proposed method generates a blur map indicating the relative amount of perceived local blurriness. In order to detect the flat
ear flat regions that do not contribute to perceivable blur, a perceptual model based on the Just Noticeable Difference (JND) is further integrated in the proposed blur detection algorithm to generate perceptually significant blur maps. We compare our proposed method with six other state-of-the-art blur detection methods. Experimental results show that the proposed method performs the best both visually and quantitatively.
This work further investigates the application of the proposed blur detection methods to image deblurring. Two selective perceptual-based image deblurring frameworks are proposed, to improve the image deblurring results and to reduce the restoration artifacts. In addition, an edge-enhanced super resolution algorithm is proposed, and is shown to achieve better reconstructed results for the edge regions.
ContributorsZhu, Tong (Author) / Karam, Lina (Thesis advisor) / Li, Baoxin (Committee member) / Bliss, Daniel (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2016

Description
In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand, given the enormous amount of data being generated daily, it is still challenging to develop effective and efficient surface-based methods to analyze brain shape morphometry. There are two major problems in surface-based shape analysis research: correspondence and similarity. This dissertation covers both topics by proposing novel surface registration and indexing algorithms based on conformal geometry for brain morphometry analysis.
First, I propose a surface fluid registration system, which extends the traditional image fluid registration to surfaces. With surface conformal parameterization, the complexity of the proposed registration formula has been greatly reduced, compared to prior methods. Inverse consistency is also incorporated to drive a symmetric correspondence between surfaces. After registration, the multivariate tensor-based morphometry (mTBM) is computed to measure local shape deformations. The algorithm was applied to study hippocampal atrophy associated with Alzheimer's disease (AD).
Next, I propose a ventricular surface registration algorithm based on hyperbolic Ricci flow, which computes a global conformal parameterization for each ventricular surface without introducing any singularity. Furthermore, in the parameter space, unique hyperbolic geodesic curves are introduced to guide consistent correspondences across subjects, a technique called geodesic curve lifting. Tensor-based morphometry (TBM) statistic is computed from the registration to measure shape changes. This algorithm was applied to study ventricular enlargement in mild cognitive impatient (MCI) converters.
Finally, a new shape index, the hyperbolic Wasserstein distance, is introduced. This algorithm computes the Wasserstein distance between general topological surfaces as a shape similarity measure of different surfaces. It is based on hyperbolic Ricci flow, hyperbolic harmonic map, and optimal mass transportation map, which is extended to hyperbolic space. This method fills a gap in the Wasserstein distance study, where prior work only dealt with images or genus-0 closed surfaces. The algorithm was applied in an AD vs. control cortical shape classification study and achieved promising accuracy rate.
First, I propose a surface fluid registration system, which extends the traditional image fluid registration to surfaces. With surface conformal parameterization, the complexity of the proposed registration formula has been greatly reduced, compared to prior methods. Inverse consistency is also incorporated to drive a symmetric correspondence between surfaces. After registration, the multivariate tensor-based morphometry (mTBM) is computed to measure local shape deformations. The algorithm was applied to study hippocampal atrophy associated with Alzheimer's disease (AD).
Next, I propose a ventricular surface registration algorithm based on hyperbolic Ricci flow, which computes a global conformal parameterization for each ventricular surface without introducing any singularity. Furthermore, in the parameter space, unique hyperbolic geodesic curves are introduced to guide consistent correspondences across subjects, a technique called geodesic curve lifting. Tensor-based morphometry (TBM) statistic is computed from the registration to measure shape changes. This algorithm was applied to study ventricular enlargement in mild cognitive impatient (MCI) converters.
Finally, a new shape index, the hyperbolic Wasserstein distance, is introduced. This algorithm computes the Wasserstein distance between general topological surfaces as a shape similarity measure of different surfaces. It is based on hyperbolic Ricci flow, hyperbolic harmonic map, and optimal mass transportation map, which is extended to hyperbolic space. This method fills a gap in the Wasserstein distance study, where prior work only dealt with images or genus-0 closed surfaces. The algorithm was applied in an AD vs. control cortical shape classification study and achieved promising accuracy rate.
ContributorsShi, Jie, Ph.D (Author) / Wang, Yalin (Thesis advisor) / Caselli, Richard (Committee member) / Li, Baoxin (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2016