Filtering by
- Creators: School of Life Sciences

For waste management in Asunción, Paraguay to improve, so too must the rate of public recycling participation. However, due to minimal public waste management infrastructure, it is up to individual citizens and the private sector to develop recycling solutions in the city. One social enterprise called Soluciones Ecológicas (SE) has deployed a system of drop-off recycling stations called ecopuntos, which allow residents to deposit their paper and cardboard, plastic, and aluminum. For SE to maximize the use of its ecopuntos, it must understand the perceived barriers to, and benefits of, their use. To identify these barriers and benefits, a doer on-doer survey based on the behavioral determinants outlined in the Designing for Behavior Change Framework was distributed among Asunción residents. Results showed that perceived self-efficacy, perceived social norms, and perceived positive consequences – as well as age – were influential in shaping ecopunto use. Other determinants such as perceived negative consequences, access, and universal motivators were significant predictors of gender and age. SE and other institutions looking to improve recycling can use these results to design effective behavior change interventions.


The maintenance of chromosomal integrity is an essential task of every living organism and cellular repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time. However, BRCA1, an essential gene involved in DNA repair, has been reported to be evolving rapidly despite the fact that many protein-altering mutations within this gene convey a significantly elevated risk for breast and ovarian cancers.
Results
To obtain a deeper understanding of the evolutionary trajectory of BRCA1, we analyzed complete BRCA1 gene sequences from 23 primate species. We show that specific amino acid sites have experienced repeated selection for amino acid replacement over primate evolution. This selection has been focused specifically on humans and our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). After examining BRCA1 polymorphisms in 7 bonobo, 44 chimpanzee, and 44 rhesus macaque (Macaca mulatta) individuals, we find considerable variation within each of these species and evidence for recent selection in chimpanzee populations. Finally, we also sequenced and analyzed BRCA2 from 24 primate species and find that this gene has also evolved under positive selection.
Conclusions
While mutations leading to truncated forms of BRCA1 are clearly linked to cancer phenotypes in humans, there is also an underlying selective pressure in favor of amino acid-altering substitutions in this gene. A hypothesis where viruses are the drivers of this natural selection is discussed.