Matching Items (729)
Description
This paper explores policies for the management of oil wealth in Norway, Mexico, and Russia, and applies them to the situation in Kazakhstan to create policy guidelines to improve the management of oil wealth in Kazakhstan. Ultimately the paper recommends that Kazakhstan transfer oil wealth to the oil stabilization fund

This paper explores policies for the management of oil wealth in Norway, Mexico, and Russia, and applies them to the situation in Kazakhstan to create policy guidelines to improve the management of oil wealth in Kazakhstan. Ultimately the paper recommends that Kazakhstan transfer oil wealth to the oil stabilization fund directly, that it increase the cap on annual transfers from the fund to the budget to 11 billion dollars, and that it create strict policies for the promotion of growth.
ContributorsHoyt, Christian Thomas (Co-author) / McCarty, Mark (Co-author) / Mendez, Jose (Thesis director) / Schoellman, Todd (Committee member) / Moldabekova, Saule (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2013-05
Description

COVID-19 misinformation covers a wide range of topics such as fatality rate, mask effectiveness, potential cures, vaccine development, and the idea of a "plandemic". The spread of this misinformation happens at a rapid speed with the help of social media and powerful influencers, including major political figures. This thesis is

COVID-19 misinformation covers a wide range of topics such as fatality rate, mask effectiveness, potential cures, vaccine development, and the idea of a "plandemic". The spread of this misinformation happens at a rapid speed with the help of social media and powerful influencers, including major political figures. This thesis is a focused case study on hydroxychloroquine, and builds a timeline of the misinformation surrounding the drug. From poorly conducted studies to the use of false experts, this study reveals how politicized misinformation garners more public attention than the actual science.

ContributorsPitts, Benjamin Jack (Author) / Ingram-Waters, Mary (Thesis director) / Hurlbut, Ben (Committee member) / School of Molecular Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This project is a synthesis of the author's learning over the semesters in working with the CFD Group at Arizona State University. The incompressible Navier-Stokes equations are overviewed, starting with the derivation from the continuity equation, then non-dimensionalization, methods of solving and computing quantities of interest. The rest of this

This project is a synthesis of the author's learning over the semesters in working with the CFD Group at Arizona State University. The incompressible Navier-Stokes equations are overviewed, starting with the derivation from the continuity equation, then non-dimensionalization, methods of solving and computing quantities of interest. The rest of this document is expository analysis of solutions in a confined fluid flow, building toward a parametrically forced regime that generates complex flow patterns including Faraday waves. The solutions come from recently published studies Dynamics in a stably stratified tilted square cavity (Grayer et al.) and Parametric instabilities of a stratified shear layer (Buchta et al).

ContributorsBuchta, Matthew Ryan (Author) / Welfert, Bruno (Thesis director) / Yalim, Jason (Committee member) / Lopez, Juan (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The role of technology in shaping modern society has become increasingly important in the context of current democratic politics, especially when examined through the lens of social media. Twitter is a prominent social media platform used as a political medium, contributing to political movements such as #OccupyWallStreet, #MeToo, and

The role of technology in shaping modern society has become increasingly important in the context of current democratic politics, especially when examined through the lens of social media. Twitter is a prominent social media platform used as a political medium, contributing to political movements such as #OccupyWallStreet, #MeToo, and #BlackLivesMatter. Using the #BlackLivesMatter movement as an illustrative case to establish patterns in Twitter usage, this thesis aims to answer the question “to what extent is Twitter an accurate representation of “real life” in terms of performative activism and user engagement?” The discussion of Twitter is contextualized by research on Twitter’s use in politics, both as a mobilizing force and potential to divide and mislead. Using intervals of time between 2014 – 2020, Twitter data containing #BlackLivesMatter is collected and analyzed. The discussion of findings centers around the role of performative activism in social mobilization on twitter. The analysis shows patterns in the data that indicates performative activism can skew the real picture of civic engagement, which can impact the way in which public opinion affects future public policy and mobilization.

ContributorsTutelman, Laura (Author) / Voorhees, Matthew (Thesis director) / Kawski, Matthias (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Serial femtosecond crystallography (SFX) with an X-ray free-electron laser (XFEL) has enabled the determination of protein structures and protein reaction intermediates in millisecond to microsecond time resolutions. Mix-and-Inject crystallography (MISC) at XFELs enables fast mixing in the magnitude of milliseconds in order to achieve desired reaction time points. For these

Serial femtosecond crystallography (SFX) with an X-ray free-electron laser (XFEL) has enabled the determination of protein structures and protein reaction intermediates in millisecond to microsecond time resolutions. Mix-and-Inject crystallography (MISC) at XFELs enables fast mixing in the magnitude of milliseconds in order to achieve desired reaction time points. For these experiments, numerical simulations of a hydrodynamic flow mixer capable of fast mixing by diffusion has been developed using both COMSOL Multiphysics 5.6 and QuickerSims Computational Fluid Dynamics (CFD) Toolbox for MATLAB. These simulation programs were compared by calculations of mixing times and concentration flow profiles. Mixing times in the range of 1-10 ms were calculated in COMSOL under certain flow rate conditions whereas mixing times in the range of 6-15 ms were calculated with QuickerSims. From these mixing times, reaction intermediates can be varied from sub-millisecond to several hundred millisecond time points for a MISC experiment. Explanations for the discrepancies between the two models were attributed to variations in parameter definitions and meshing. Further analysis on the mixing characteristics were investigated by calculating an analytical solution to the convection-diffusion equation for fluid flow in a two-dimensional rectangular channel. The concentration profile along the width of the channel for the analytical solution was compared with the numerical solution obtained with COMSOL and QuickerSims. Upon comparison, it was determined that the diffusion coefficient may not be a significant factor for the disagreement between the two hydrodynamic flow models.

ContributorsGuzman, Manuel Alexander (Author) / Ros, Alexandra (Thesis director) / Williams, Peter (Committee member) / Hayes, Mark (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This paper is an exploration of numerical optimization as it applies to the consumer choice problem. Suggested algorithms are intended to compute solutions to the Marshallian problem, and some can extend to the dual given the suggested modifications. Each method seeks to either weaken the sufficient conditions for optimization, converge

This paper is an exploration of numerical optimization as it applies to the consumer choice problem. Suggested algorithms are intended to compute solutions to the Marshallian problem, and some can extend to the dual given the suggested modifications. Each method seeks to either weaken the sufficient conditions for optimization, converge to a solution more efficiently, or describe additional properties of the decision space. The purpose of this paper is to explore constrained quasiconvex programming in a less complicated environment by design of Marshallian constraints.

ContributorsKnipp, Charles (Author) / Reffett, Kevin (Thesis director) / Leiva-Bertran, Fernando (Committee member) / Department of Economics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Human-environment interactions in aeolian (windblown) systems has focused research on<br/>human’s role in causing and aiding recovery from natural and anthropogenic disturbance. There<br/>is room for improvement in understanding the best methods and considerations for manual<br/>coastal foredune restoration. Furthermore, the extent to which humans play a role in changing the<br/>shape and surface

Human-environment interactions in aeolian (windblown) systems has focused research on<br/>human’s role in causing and aiding recovery from natural and anthropogenic disturbance. There<br/>is room for improvement in understanding the best methods and considerations for manual<br/>coastal foredune restoration. Furthermore, the extent to which humans play a role in changing the<br/>shape and surface textures of quartz sand grains is poorly understood. The goal of this thesis is<br/>two-fold: 1) quantify the geomorphic effectiveness of a multi-year manually rebuilt foredune and<br/>2) compare the shapes and microtextures on disturbed and undisturbed quartz sand grains. For<br/>the rebuilt foredune, uncrewed aerial systems (UAS) were used to survey the site, collecting<br/>photos to create digital surface models (DSMs). These DSMs were compared at discrete<br/>moments in time to create a sediment budget. Water levels and cross-shore modeling is also<br/>considered to predict the decadal evolution of the site. In the two years since rebuilding, the<br/>foredune has been stable, but not geomorphically resilient. Modeling shows landward foredune<br/>retreat and beach widening. For the quartz grains, t-testing of shape characteristics showed that<br/>there may be differences in the mean circularity between grains from off-highway vehicle and<br/>non-riding areas. Quartz grains from a variety of coastal and inland dunes were imaged using a<br/>scanning electron microscopy to search for evidence of anthropogenically-induced<br/>microtextures. On grains from Oceano Dunes in California, encouraging textures like parallel<br/>striations, grain fracturing, and linear conchoidal fractures provide exploratory evidence of<br/>anthropogenic microtextures. More focused research is recommended to confirm this exploratory<br/>work.

ContributorsMarvin, Michael Colin (Author) / Walker, Ian (Thesis director) / Dorn, Ron (Committee member) / Schmeeckle, Mark (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer the question of whether a similar interaction leads to savings, a model-free process that is described as faster relearning when experiencing something familiar. This was tested in a two-week reaching task conducted on a robotic arm capable of perturbing movements. The task was designed so that the two sessions differed in their history of errors. By measuring the change in the learning rate, the savings was determined at various points. The results showed that the history of errors successfully modulated savings. Thus, this supports the notion that the two complementary systems interact to develop savings. Additionally, this report was part of a larger study that will explore the organizational structure of the complementary systems as well as the neural basis of this motor learning.

ContributorsRuta, Michael (Author) / Santello, Marco (Thesis director) / Blais, Chris (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Edge computing is a new and growing market that Company X has an opportunity to expand their presence. Within this paper, we compare many external research studies to better quantify the Total Addressable Market of the Edge Computing space. Furthermore, we highlight which Segments within Edge Computing have the most

Edge computing is a new and growing market that Company X has an opportunity to expand their presence. Within this paper, we compare many external research studies to better quantify the Total Addressable Market of the Edge Computing space. Furthermore, we highlight which Segments within Edge Computing have the most opportunities for growth, along with identify a specific market strategy that Company X could do to capture market share within the most opportunistic segment.

ContributorsHamkins, Sean (Co-author) / Raimondi, Ronnie (Co-author) / Gandolfi, Micheal (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Over the years, advances in research have continued to decrease the size of computers from the size of<br/>a room to a small device that could fit in one’s palm. However, if an application does not require extensive<br/>computation power nor accessories such as a screen, the corresponding machine could be microscopic,<br/>only

Over the years, advances in research have continued to decrease the size of computers from the size of<br/>a room to a small device that could fit in one’s palm. However, if an application does not require extensive<br/>computation power nor accessories such as a screen, the corresponding machine could be microscopic,<br/>only a few nanometers big. Researchers at MIT have successfully created Syncells, which are micro-<br/>scale robots with limited computation power and memory that can communicate locally to achieve<br/>complex collective tasks. In order to control these Syncells for a desired outcome, they must each run a<br/>simple distributed algorithm. As they are only capable of local communication, Syncells cannot receive<br/>commands from a control center, so their algorithms cannot be centralized. In this work, we created a<br/>distributed algorithm that each Syncell can execute so that the system of Syncells is able to find and<br/>converge to a specific target within the environment. The most direct applications of this problem are in<br/>medicine. Such a system could be used as a safer alternative to invasive surgery or could be used to treat<br/>internal bleeding or tumors. We tested and analyzed our algorithm through simulation and visualization<br/>in Python. Overall, our algorithm successfully caused the system of particles to converge on a specific<br/>target present within the environment.

ContributorsMartin, Rebecca Clare (Author) / Richa, Andréa (Thesis director) / Lee, Heewook (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05