Matching Items (621)
Description

This project is focused on exploring the features and benefits of self-cleaning seats. The Founder's Lab team conducted research to determine the proper markets for this technology.

ContributorsYang, Tiger (Author) / Byrne, Jared (Thesis director) / Nimmagadda, Viraj (Committee member) / Jawahar, Nandita (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Water quality and accessibility can impact most aspects of life such as hygiene, medicine,<br/>thermal comfort, sewage disposal, and health, to name a few. Rising concerns related to the<br/>quality of drinking water in the United States caused by municipal water utility failures such as<br/>in Texas or in Michigan has led to

Water quality and accessibility can impact most aspects of life such as hygiene, medicine,<br/>thermal comfort, sewage disposal, and health, to name a few. Rising concerns related to the<br/>quality of drinking water in the United States caused by municipal water utility failures such as<br/>in Texas or in Michigan has led to an inquiry into the root cause of how a supply-chain for a<br/>basic necessity such as water can run into issues. After initial research and investigation, one<br/>hypothesis for this was the nature of how recyclable materials in a linear economy eventually run<br/>into production or storage problems as exhaustible resources (or space) become less accessible<br/>over time. To remedy this issue, LifeGear360 is introduced to allow individual users the liberty<br/>to treat their water directly if needed, while also remaining in a circular economy for the<br/>lifecycle of the product. As a backpack with water treatment capabilities, natural plant fibers are<br/>used to ensure a renewable cycle of production while also redefining the traditional<br/>“plastic-taste” characteristics many people associate with water pouches to a smoother, cleaner<br/>taste. Engineering, sustainability, and business and public service practice have been used in an<br/>interdisciplinary way to prepare this product for its intended use such as in school, for travel, and<br/>for the outdoors. According to the collected outreach, many indicated that they feel as though<br/>there is a need for a product that allows for the feeling of water security which can include<br/>carrying any personal belongings as well. Marketing strategies such as logo creating and online<br/>outreach continually influence product design, up until production would take place following<br/>the finalized design.

ContributorsKaramanov, Timur (Co-author) / Salciccioli, Julia (Co-author) / Vidaure, Michael (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding discrepant results from codes using<br/>different rates. In this paper, I compare the effect of varying the mass loss rate in the<br/>stellar evolution code TYCHO on the initial-final mass relation. I computed four sets of<br/>models with varying mass loss rates and metallicities. Due to a large number of models<br/>reaching the luminous blue variable stage, only the two lower metallicity groups were<br/>considered. Their mass loss was analyzed using Python. Luminosity, temperature, and<br/>radius were also compared. The initial-final mass relation plots showed that in the 1/10<br/>solar metallicity case, reducing the mass loss rate tended to increase the dependence of final mass on initial mass. The limited nature of these results implies a need for further study into the effects of using different mass loss rates in the code TYCHO.

ContributorsAuchterlonie, Lauren (Author) / Young, Patrick (Thesis director) / Shkolnik, Evgenya (Committee member) / Starrfield, Sumner (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Dreadnought is a free-to-play multiplayer flight simulation in which two teams of 8 players each compete against one another to complete an objective. Each player controls a large-scale spaceship, various aspects of which can be customized to improve a player’s performance in a game. One such aspect is Officer Briefings,

Dreadnought is a free-to-play multiplayer flight simulation in which two teams of 8 players each compete against one another to complete an objective. Each player controls a large-scale spaceship, various aspects of which can be customized to improve a player’s performance in a game. One such aspect is Officer Briefings, which are passive abilities that grant ships additional capabilities. Two of these Briefings, known as Retaliator and Get My Good Side, have strong synergy when used together, which has led to the Dreadnought community’s claiming that the Briefings are too powerful and should be rebalanced to be more in line with the power levels of other Briefings. This study collected gameplay data with and without the use of these specific Officer Briefings to determine the precise impact on gameplay. Linear correlation matrices and inference on two means were used to determine performance impact. It was found that, although these Officer Briefings do improve an individual player’s performance in a game, they do not have a consistent impact on the player’s team performance, and that these Officer Briefings are therefore not in need of rebalancing.

ContributorsJacobs, Max I. (Author) / Schneider, Laurence (Thesis director) / Tran, Samantha (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis project will be investigating the interactions and organizational theory within the student housing market at Arizona State University. The focus of the project will be around the partnership that makes up many of the communities, the public company known as American Campus Communities, and the auxiliary of Arizona

This thesis project will be investigating the interactions and organizational theory within the student housing market at Arizona State University. The focus of the project will be around the partnership that makes up many of the communities, the public company known as American Campus Communities, and the auxiliary of Arizona State University Housing. The paper will analyze the organization through the four frames outlined by Bolman and Deal’s Reframing Organizations. These four are the structural, human resource, political, and symbolic frames. The paper will confront two main issues found in the organization. The first is the frequent turnover of staff. The second will be the separation between the departments, leading to unstable communication. Solutions will be proposed that could take some pressure off the problems that are identified. Compensation for staff and adjustments to summer living may allow retention to improve. Adjusted training and top-level management communication and interaction may improve the stark separation between areas of the organization. Analyzing these issues and solutions through the organizational frames allows us to better understand the reasoning behind and possible effects of any decision. This project has been very insightful, and I learned a lot with my studies and am proud to be a part of this organization and its mission to serve the students.

ContributorsHamilton, Gavin J (Author) / deLusé, Stephanie (Thesis director) / Videla, Kaila (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Currently, recycling is a major issue found throughout the world; however, one of the main issues, small format recycling, is still yet to be solved. The main objective of this paper is to discuss the issues surrounding recycling in general and more specifically small format recycling in order to

Currently, recycling is a major issue found throughout the world; however, one of the main issues, small format recycling, is still yet to be solved. The main objective of this paper is to discuss the issues surrounding recycling in general and more specifically small format recycling in order to develop a solution that can solve the problem. Working with InnovationSpace and people in industry, interviews were conducted in order to determine the best course of action to address the need of the sponsor, The Sustainability Consortium. After extensive research and interviews, it was determined that implementing a new MRF attachment to circulate small format back to the main residual stream would be the best course of action. This attachment would be modular for a MRF and could be implemented in order to gather more material while also producing higher quality recycled goods. This has major implications for the recycling industry and could help in making recycling profitable once again.

ContributorsSullivan, Neal (Author) / Kuhn, Anthony (Thesis director) / Heller, Cheryl (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for SPARCS have demonstrated more than five times the in-band quantum efficiency of the detectors of GALEX. Given that red:UV photon emission from cool, low-mass stars can be million:one, UV observation of thes stars are susceptible to red light contamination. In addition to the high efficiency delta-doped detectors, SPARCS will include red-rejection filters to help minimize red leak. Even so, careful red-rejection and photometric calibration is needed. As was done for GALEX, white dwarfs are used for photometric calibration in the UV. We find that the use of white dwarfs to calibrate the observations of red stars leads to significant errors in the reported flux, due to the differences in white dwarf and red dwarf spectra. Here we discuss the planned SPARCS calibration model and the color correction, and demonstrate the importance of this correction when recording UV measurements of M stars taken by SPARCS.

ContributorsOsby, Ella (Author) / Shkolnik, Evgenya (Thesis director) / Ardila, David (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

In an age of crisis, division, and ideological representation, it is vital to understand the representative and leadership qualities that made past presidents successful, not in terms of policy, but in terms of character. This interpretation of the American presidency reflects the nation as a whole, not as a political

In an age of crisis, division, and ideological representation, it is vital to understand the representative and leadership qualities that made past presidents successful, not in terms of policy, but in terms of character. This interpretation of the American presidency reflects the nation as a whole, not as a political or personal allegiance, but as a symbol of Americanism in the current age. Through the use of scholarly literature and historical accounts of highlighted American Presidents, (Washington, Lincoln, Roosevelt, FDR, and more), insight can be utilized to create a new model of presidential representation that addresses the faults of current methodologies. This thesis aims to identify the critical successful characteristics and strategies enacted by American presidents to relate with the American people, especially in times of hardship, when understanding and connection are needed the most. These attributes can then formulate a blueprint for positive personal relationships and identify qualities for future Presidential leadership. Once determined, these traits can be formatted into a new model of representation to analyze the representative power and ability of the American presidency in order to establish a baseline for successful representation.

ContributorsVitucci, Jacob Vincent (Author) / Voorhees, Matthew (Thesis director) / Elizabeth, Evans (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Spacebound is a mobile application that helps people understand astronomical distances by converting their distances walked on Earth to an interstellar scale. To better navigate outer space, the app presents predefined distance scales and journeys with various objects (planets, asteroids, stars) to explore. Spacebound hopes to be a gamified approach

Spacebound is a mobile application that helps people understand astronomical distances by converting their distances walked on Earth to an interstellar scale. To better navigate outer space, the app presents predefined distance scales and journeys with various objects (planets, asteroids, stars) to explore. Spacebound hopes to be a gamified approach for exploring outer space and also an educational app where the user can learn more about objects as they visit them.

ContributorsSadachar, Shivam (Author) / O'Rourke, Joseph (Thesis director) / Loyd, Parke (Committee member) / Melodie, Kao (Committee member) / Computer Science and Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The experimental assessment of cracking distresses in asphalt concrete pavements is crucial to the longevity of pavements. As such, fracture parameters obtained from experiments play a key role in facilitating the use of fracture mechanics theories and prediction of cracking distresses in asphalt concrete (AC) pavements. The stress intensity

The experimental assessment of cracking distresses in asphalt concrete pavements is crucial to the longevity of pavements. As such, fracture parameters obtained from experiments play a key role in facilitating the use of fracture mechanics theories and prediction of cracking distresses in asphalt concrete (AC) pavements. The stress intensity factor (SIF) is among the fracture parameters derived from fracture mechanics theory. Many fracture mechanics based laboratory tests have been developed with the goal of calculating such key fracture parameters. The C* Fracture test is unique among them because it incorporates rate dependent loading into the calculation of fracture parameters via the theory of the C* Line integral. However, unlike other laboratory fracture tests, the C* Fracture test does not have any analytical solution or previous sources from literature which describe geometric shape factors used in the calculation of SIFs. Numerical modeling of the C* Fracture test specimen is also limited in literature. Therefore, there is a need for a high-fidelity numerical model of this fracture test in order to develop SIF functions. In this thesis, the numerical models of the C* Fracture test were developed using the Generalized Finite Element Method (GFEM). GFEM is particularly effective at modeling problems with discontinuities in complex 3-D structures. The use of the GFEM to solve this problem allows a high-fidelity numerical model to be created without a large computational cost and labor intensive mesh crafting. After verifying the model accuracy using convergence analysis, the specimen geometry was modeled by changing the crack size. A SIF function was developed that includes a specific geometry dependent shape factor for the C* Fracture test based on Linear Elastic Fracture Mechanics (LEFM).

ContributorsSudhakar, Aditya (Author) / Ozer, Hasan (Thesis director) / Rajan, Subramaniam (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05