Matching Items (2)
Filtering by

Clear all filters

130337-Thumbnail Image.png
Description
Cuatro Ciénegas Basin (CCB) is a desert ecosystem that hosts a large diversity of water bodies. Many surface waters in this basin have imbalanced nitrogen (N) to phosphorus (P) stoichiometry (total N:P > 100 by atoms), where P is likely to be a limiting nutrient. To investigate the effects of

Cuatro Ciénegas Basin (CCB) is a desert ecosystem that hosts a large diversity of water bodies. Many surface waters in this basin have imbalanced nitrogen (N) to phosphorus (P) stoichiometry (total N:P > 100 by atoms), where P is likely to be a limiting nutrient. To investigate the effects of nutrient stoichiometry on planktonic and sediment ecosystem components and processes, we conducted a replicated in situ mesocosm experiment in Lagunita, a shallow pond located in the southwest region of the basin. Inorganic N and P were periodically added to mesocosms under three different N:P regimes (P only, N:P = 16 and N:P = 75) while the control mesocosms were left unamended. After three weeks of fertilization, more than two thirds of the applied P was immobilized into seston or sediment. The rapid uptake of P significantly decreased biomass C:P and N:P ratios, supporting the hypothesis that Lagunita is P-limited. Meanwhile, simultaneous N and P enrichment significantly enhanced planktonic growth, increasing total planktonic biomass by more than 2-fold compared to the unenriched control. With up to 76% of added N sequestered into the seston, it is suspected that the Lagunita microbial community also experienced strong N-limitation. However, when N and P were applied at N:P = 75, the microbes remained in a P-limitation state as in the untreated control. Two weeks after the last fertilizer application, seston C:P and N:P ratios returned to initial levels but chlorophyll a and seston C concentrations remained elevated. Additionally, no P release from the sediment was observed in the fertilized mesocosms. Overall, this study provides evidence that Lagunita is highly sensitive to nutrient perturbation because the biota is primarily P-limited and experiences a secondary N-limitation despite its high TN:TP ratio. This study serves as a strong basis to justify the need for protection of CCB ecosystems and other low-nutrient microbe-dominated systems from anthropogenic inputs of both N and P.
ContributorsLee, Zarraz (Author) / Steger, Laura (Author) / Corman, Jessica (Author) / Neveu, Marc (Author) / Poret-Peterson, Amisha (Author) / Souza, Valeria (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2015-04-16
Description

Cell-sediment separation methods can potentially enable determination of the elemental composition of microbial communities by removing the sediment elemental contribution from bulk samples. We demonstrate that a separation method can be applied to determine the composition of prokaryotic cells. The method uses chemical and physical means to extract cells from

Cell-sediment separation methods can potentially enable determination of the elemental composition of microbial communities by removing the sediment elemental contribution from bulk samples. We demonstrate that a separation method can be applied to determine the composition of prokaryotic cells. The method uses chemical and physical means to extract cells from benthic sediments and mats. Recovery yields were between 5% and 40%, as determined from cell counts. The method conserves cellular element contents to within 30% or better, as assessed by comparing C, N, P, Mg, Al, Ca, Ti, Mn, Fe, Ni, Cu, Zn, and Mo contents in Escherichia coli. Contamination by C, N, and P from chemicals used during the procedure was negligible. Na and K were not conserved, being likely exchanged through the cell membrane as cations during separation. V, Cr, and Co abundances could not be determined due to large (>100%) measurement uncertainties. We applied this method to measure elemental contents in extremophilic communities of Yellowstone National Park hot springs. The method was generally successful at separating cells from sediment, but does not discriminate between cells and detrital biological or noncellular material of similar density. This resulted in Al, Ti, Mn, and Fe contamination, which can be tracked using proxies such as metal:Al ratios. With these caveats, we present the first measurements, to our knowledge, of the elemental abundances of a chemosynthetic community. The communities have C:N ratios typical of aquatic microorganisms, are low in P, and their metal abundances vary between hot springs by orders of magnitude.

ContributorsNeveu, Marc (Author) / Poret-Peterson, Amisha (Author) / Lee, Zarraz (Author) / Anbar, Ariel (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-01