
The transmission dynamics of Tuberculosis (TB) involve complex epidemiological and socio-economical interactions between individuals living in highly distinct regional conditions. The level of exogenous reinfection and first time infection rates within high-incidence settings may influence the impact of control programs on TB prevalence. The impact that effective population size and the distribution of individuals’ residence times in different patches have on TB transmission and control are studied using selected scenarios where risk is defined by the estimated or perceive first time infection and/or exogenous re-infection rates.
Methods
This study aims at enhancing the understanding of TB dynamics, within simplified, two patch, risk-defined environments, in the presence of short term mobility and variations in reinfection and infection rates via a mathematical model. The modeling framework captures the role of individuals’ ‘daily’ dynamics within and between places of residency, work or business via the average proportion of time spent in residence and as visitors to TB-risk environments (patches). As a result, the effective population size of Patch i (home of i-residents) at time t must account for visitors and residents of Patch i, at time t.
Results
The study identifies critical social behaviors mechanisms that can facilitate or eliminate TB infection in vulnerable populations. The results suggest that short-term mobility between heterogeneous patches contributes to significant overall increases in TB prevalence when risk is considered only in terms of direct new infection transmission, compared to the effect of exogenous reinfection. Although, the role of exogenous reinfection increases the risk that come from large movement of individuals, due to catastrophes or conflict, to TB-free areas.
Conclusions
The study highlights that allowing infected individuals to move from high to low TB prevalence areas (for example via the sharing of treatment and isolation facilities) may lead to a reduction in the total TB prevalence in the overall population. The higher the population size heterogeneity between distinct risk patches, the larger the benefit (low overall prevalence) under the same “traveling” patterns. Policies need to account for population specific factors (such as risks that are inherent with high levels of migration, local and regional mobility patterns, and first time infection rates) in order to be long lasting, effective and results in low number of drug resistant cases.




This paper outlines the design and testing of a z-scan spectrometer capable of measuring the third order refraction index of liquids. The spectrometer underwent multiple redesigns, with each explored in this paper with their benefits and drawbacks discussed. The first design was capable of measuring the third order refraction index for glass, and found a value of 8.43 +- 0.392 x 10^(-16) cm^2/W for the glass sample, with the literature stating glass has a refraction index between 1-100 x 10^(-16) cm^2/W. The second design was capable of measuring the third order refraction index of liquids, and found values of 1.23 $\pm$ 0.121 $\e{-16}$ and 9.43 +- 1.00 x 10^(-17) cm^2/W for water and ethanol respectively, with literature values of 2.7 x 10^(-16) and 5.0 x 10^(-17) cm^2/W respectively. The third design gave inconclusive results due to extreme variability in testing, and and the fourth design outlined has not been tested yet due to time constraints.
The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in a single fly that would allow for simultaneous expression of the oncogene and, in <br/>the surrounding cells, other genes of interest. This system would help establish Drosophila as a <br/>more versatile and reliable model organism for cancer research. Furthermore, pilot studies were <br/>performed, using elements of the final proposed system, to determine if tumor growth is possible <br/>in the center of the disc, which oncogene produces the best results, and if oncogene expression <br/>induced later in development causes tumor growth. Three different candidate genes were <br/>investigated: RasV12, PvrACT, and Avli.
Microfluidic devices represent a growing technology in the world of analytical chemistry. Serial femtosecond crystallography (SFX) utilizes microfluidic devices to generate droplets of an aqueous buffer containing protein crystals, which are then fired out as a jet in the beam of an X-ray free electron laser (XFEL). A crucial part of the device is its method of droplet detection. This project presents a design for a capacitive sensor that uses a unique electrode configuration to detect the difference in capacitance between the aqueous and oil phases. This design was developed using MATLAB and COMSOL Multiphysics simulations and printed using high-resolution 3D printing. Results show that this design can successfully distinguish between the two immiscible liquids, confirming it as a possible detection method in future SFX experiments.
Language has a critical role as a social determinant of health and a source of healthcare disparities. Rhetorical devices are ubiquitous in medicine and are often used to persuade or inform care team members. Rhetorical devices help a healthcare team acknowledge and interpret narratives. For example, metaphors are frequently used as rhetorical devices by patients to describe cancer, including winning or losing a battle, surviving a fight, war, potentially implying that the patient feels helpless like a pawn fighting in a struggle directed by the physician, thus reducing patient autonomy and agency. However, this occidental approach is flawed because it excessively focuses on the individual's agency and marginalizes external factors, such as cultural beliefs and social support (Sontag, 1989). Although there is a large body of research about how the rhetoric of medicine affects patients in the United States, there is a lack of such research about how patient experiences' rhetoric can help increase the understanding of Latino populations' unique social determinants. This creative project aims to analyze the rhetorical differences in the description of disease amongst Latino and American communities, translating to creating an educational module for a Spanish for biomedical sciences class. The objective is to increase future healthcare professionals' ability to understand how the composition of descriptions and medical rhetoric in different mediums of humanities can serve as critical tools to analyze social determinants in Latino healthcare delivery.
CD47 is a cell surface receptor expressed on many cells in the body. It has many immune functions such as marking host cells as “self” and the activation of apoptosis through phagocytosis. Mac-1 is a major integrin on myeloid cells and has been implicated in several different macrophage immune functions. Previous studies from Dr. Ugarova’s lab demonstrated CD47 may form a complex with Mac-1 through the cis-interaction and could regulate Mac-1-dependent macrophage functions. To localize the binding site for Mac-1 in CD47, the extracellular domain of CD47 IgV was isolated as GST-fusion protein from E. coli cells. The recombinant fusion protein is being used in current studies with cell adhesion assays and immunoprecipitation to determine the complementary binding site in Mac-1.