Matching Items (59)
Description

This creative project is a visual and sonic exploration of emotion in a video game format. The game is a 2D side-scroller created using PyGame and Python that focuses on a character who uses "emotions" to navigate their increasingly unrecognizable world. This project was taken on to explore the ways

This creative project is a visual and sonic exploration of emotion in a video game format. The game is a 2D side-scroller created using PyGame and Python that focuses on a character who uses "emotions" to navigate their increasingly unrecognizable world. This project was taken on to explore the ways in which technologically-created media can relate to the human experience of emotion, and the ways in which emotions are like software to the human body's hardware. Additionally, this project conceptually comments on and rejects the idea that human situations always require a specific "appropriate" human emotion in response. Credit for the music in this game goes to Markus Rennemann.

ContributorsBennett, Ashley Laura (Author) / Ingalls, Todd (Thesis director) / Kautz, Luke (Committee member) / Barrett, The Honors College (Contributor) / School of Arts, Media and Engineering (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-12
Description

Optimal foraging theory provides a suite of tools that model the best way that an animal will <br/>structure its searching and processing decisions in uncertain environments. It has been <br/>successful characterizing real patterns of animal decision making, thereby providing insights<br/>into why animals behave the way they do. However, it does

Optimal foraging theory provides a suite of tools that model the best way that an animal will <br/>structure its searching and processing decisions in uncertain environments. It has been <br/>successful characterizing real patterns of animal decision making, thereby providing insights<br/>into why animals behave the way they do. However, it does not speak to how animals make<br/>decisions that tend to be adaptive. Using simulation studies, prior work has shown empirically<br/>that a simple decision-making heuristic tends to produce prey-choice behaviors that, on <br/>average, match the predicted behaviors of optimal foraging theory. That heuristic chooses<br/>to spend time processing an encountered prey item if that prey item's marginal rate of<br/>caloric gain (in calories per unit of processing time) is greater than the forager's<br/>current long-term rate of accumulated caloric gain (in calories per unit of total searching<br/>and processing time). Although this heuristic may seem intuitive, a rigorous mathematical<br/>argument for why it tends to produce the theorized optimal foraging theory behavior has<br/>not been developed. In this thesis, an analytical argument is given for why this<br/>simple decision-making heuristic is expected to realize the optimal performance<br/>predicted by optimal foraging theory. This theoretical guarantee not only provides support<br/>for why such a heuristic might be favored by natural selection, but it also provides<br/>support for why such a heuristic might a reliable tool for decision-making in autonomous<br/>engineered agents moving through theatres of uncertain rewards. Ultimately, this simple<br/>decision-making heuristic may provide a recipe for reinforcement learning in small robots<br/>with little computational capabilities.

ContributorsCothren, Liliaokeawawa Kiyoko (Author) / Pavlic, Theodore (Thesis director) / Brewer, Naala (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.

ContributorsSaldyt, Lucas P (Author) / Ben Amor, Heni (Thesis director) / Pavlic, Theodore (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
In 2015, a new way to track baseball games was introduced to MLB, marking the beginning of the Statcast Revolution. This new way to track the game brought about a number of new statistics, including the use of expected statistics. Expected statistics provide an estimate of what a player’s statistics

In 2015, a new way to track baseball games was introduced to MLB, marking the beginning of the Statcast Revolution. This new way to track the game brought about a number of new statistics, including the use of expected statistics. Expected statistics provide an estimate of what a player’s statistics should be on average with their same actions. This will be explored more in the upcoming paper. While expected statistics are not intended to predict the future performance of players, I theorized that there may be some relation, particularly on younger players. There is not any research on this topic yet, and if there does exist a correlation between expected statistics and future performance, it would allow teams to have a new way to predict data on their players. Research to find a correlation between the two was carried out by taking predictive accuracies of expected batting average and slugging of 12 MLB players throughout their rookie to 8th year seasons and combining them together to find an interval in which I could be confident the correlation lay. Overall, I found that I could not be certain that there was a correlation between the predictive accuracy of expected statistics and the length of time a player has played in MLB. While this conclusion does not offer any insights of how to better predict a player’s future performance, the methodology and findings still present opportunities to gain a better understanding of the predictive measures of expected statistics.
ContributorsEdmiston, Alexander (Author) / Pavlic, Theodore (Thesis director) / Montgomery, Douglas (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor)
Created2024-05
Description

Enantiomers are pairs of non-superimposable mirror-image molecules. One molecule in the pair is the clockwise version (+) while the other is the counterclockwise version (-). Some pairs have divergent odor qualities, e.g. L-carvone (“spearmint”) vs. D-carvone (“caraway”), while other pairs do not. Existing theory about the origin of such differences

Enantiomers are pairs of non-superimposable mirror-image molecules. One molecule in the pair is the clockwise version (+) while the other is the counterclockwise version (-). Some pairs have divergent odor qualities, e.g. L-carvone (“spearmint”) vs. D-carvone (“caraway”), while other pairs do not. Existing theory about the origin of such differences is largely qualitative (Friedman and Miller, 1971; Bentley, 2006; Brookes et al., 2008). While quantitative models based on intrinsic molecular features predict some structure–odor relationships (Keller et al., 2017), they cannot identify, e.g. the more intense enantiomer in a pair; the mathematical operations underlying such features are invariant under symmetry (Shadmany et al., 2018). Only the olfactory receptor (OR) can break this symmetry because each molecule within an enantiomeric pair will have a different binding configuration with a receptor. However, features that predict odor divergence within a pair may be identifiable; for example, six-membered ring flexibility has been offered as a candidate (Brookes et al., 2008). To address this problem, we collected detection threshold data for >400 molecules (organized into enantiomeric pairs) from a variety of public data sources and academic literature. From each pair, we computed the within-pair divergence in odor detection threshold, as well as Mordred descriptors (molecular features derived from the structure of a molecule) and Morgan fingerprints (mathematical representations of molecule structure). While these molecular features are identical within-pair (due to symmetry), they remain distinct across pairs. The resulting structure+perception dataset was used to build a predictive model of odor detection threshold divergence. It predicted a modest fraction of variance in odor detection threshold divergence (r 2 ~ 0.3 in cross-validation). We speculate that most of the remaining variance could be explained by a better understanding of the ligand-receptor binding process.

ContributorsColeman, Liyah (Author) / Pavlic, Theodore (Thesis director) / Gerkin, Richard (Committee member) / Barrett, The Honors College (Contributor) / Computer Science - BS (Contributor)
Created2023-05
Description
Adaptive capacity to climate change is the ability of a system to mitigate or take advantage of climate change effects. Research on adaptive capacity to climate change suffers fragmentation. This is partly because there is no clear consensus around precise definitions of adaptive capacity. The aim of this thesis is

Adaptive capacity to climate change is the ability of a system to mitigate or take advantage of climate change effects. Research on adaptive capacity to climate change suffers fragmentation. This is partly because there is no clear consensus around precise definitions of adaptive capacity. The aim of this thesis is to place definitions of adaptive capacity into a formal framework. I formalize adaptive capacity as a computational model written in the Idris 2 programming language. The model uses types to constrain how the elements of the model fit together. To achieve this, I analyze nine existing definitions of adaptive capacity. The focus of the analysis was on important factors that affect definitions and shared elements of the definitions. The model is able to describe an adaptive capacity study and guide a user toward concepts lacking clarity in the study. This shows that the model is useful as a tool to think about adaptive capacity. In the future, one could refine the model by forming an ontology for adaptive capacity. One could also review the literature more systematically. Finally, one might consider turning to qualitative research methods for reviewing the literature.
ContributorsManuel, Jason (Author) / Bazzi, Rida (Thesis director) / Pavlic, Theodore (Committee member) / Middel, Ariane (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
A swarm of unmanned aerial vehicles (UAVs) has many potential applications including disaster relief, search and rescue, and area surveillance. A critical factor to a UAV swarm’s success is its ability to collectively locate and pursue targets determined to be of high quality with minimal and decentralized communication. Prior work

A swarm of unmanned aerial vehicles (UAVs) has many potential applications including disaster relief, search and rescue, and area surveillance. A critical factor to a UAV swarm’s success is its ability to collectively locate and pursue targets determined to be of high quality with minimal and decentralized communication. Prior work has investigated nature-based solutions to this problem, in particular the behavior of honeybees when making decisions on future nest sites. A UAV swarm may mimic this behavior for similar ends, taking advantage of widespread sensor coverage induced by a large population. To determine whether the proven success of honeybee strategies may still be found in UAV swarms in more complex and difficult conditions, a series of simulations were created in Python using a behavior modeled after the work of Cooke et al. UAV and environmental properties were varied to determine the importance of each to the success of the swarm and to find emergent behaviors caused by combinations of variables. From the simulation work done, it was found that agent population and lifespan were the two most important factors to swarm success, with preference towards small teams with long-lasting UAVs.
ContributorsGao, Max (Author) / Berman, Spring (Thesis director) / Pavlic, Theodore (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor)
Created2023-05
Description

In this project, I analyze representative samples from three different fashion brands’ sustainability-related informational materials provided to the public through their websites, annual reports, and clothing tags that promote the company’s environmental initiatives. The three companies were chosen because they each represent global fashion- they are all extremely large, popular,

In this project, I analyze representative samples from three different fashion brands’ sustainability-related informational materials provided to the public through their websites, annual reports, and clothing tags that promote the company’s environmental initiatives. The three companies were chosen because they each represent global fashion- they are all extremely large, popular, and prevalent brands. These materials are evaluated against three frameworks for identifying deceptive greenwashing claims. I identify instances in which these frameworks are successful in categorizing deceptive claims from these companies as well as instances in which they appear to be vulnerable. To address the vulnerabilities I discover in the three existing frameworks for identifying greenwashing, I propose six new guidelines to be used in conjunction with these frameworks that will help to ensure that consumers can have a more ample toolbox to identify deceptive sustainability claims.

ContributorsLadewig, Emily (Author) / Pavlic, Theodore (Thesis director) / Roschke, Kristy (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Art (Contributor) / School of Sustainability (Contributor)
Created2023-05
Description
The purpose of this project is to artistically express that our perceptions of the visual world are interrupted due to the often overlooked blinking of our eyes. The project was guided by two questions: 1) How is blink rate related to thought and emotion? 2) How does the process of

The purpose of this project is to artistically express that our perceptions of the visual world are interrupted due to the often overlooked blinking of our eyes. The project was guided by two questions: 1) How is blink rate related to thought and emotion? 2) How does the process of blinking provide context to our life experiences? To link these two concepts together, I constructed a creative editing device that uses a live video feed of the user's eye blinking to randomly launch pre-existing footage of the user's significant life events. The process of creating this project occurred in three distinct steps. In the first step, I recorded 30-second videos to be used as a demonstration when exhibiting the device. In the second step, I attached a camera to a head mount to output a real time video of my eye blinking. In the third step, I created a Max patch that used the video feed of my eye as a trigger to play my pre-recorded clips. The final result was an evocative non-linear narrative of past personal experiences, and the development of the narrative itself is similar to the way in which humans recall memories. The visuals of the blinking eye were placed adjacent to the pre-recorded footage in order to mimic the positioning of two eyes on a face; one side of the display shows my actual eye, and the other side signifies looking back on what my eye has seen. The intended effect was to generate an awareness of the breaks in our vision and how this influences our existence.
ContributorsYoshisato, Sarah Hanako (Author) / Connell, Ellery (Thesis director) / Gharavi, Lance (Committee member) / Tinapple, David (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2014-05
Description
The purpose of this project is to artistically express that our perceptions of the visual world are interrupted due to the often overlooked blinking of our eyes. The project was guided by two questions: 1) How is blink rate related to thought and emotion? 2) How does the process of

The purpose of this project is to artistically express that our perceptions of the visual world are interrupted due to the often overlooked blinking of our eyes. The project was guided by two questions: 1) How is blink rate related to thought and emotion? 2) How does the process of blinking provide context to our life experiences? To link these two concepts together, I constructed a creative editing device that uses a live video feed of the user's eye blinking to randomly launch pre-existing footage of the user's significant life events. The process of creating this project occurred in three distinct steps. In the first step, I recorded 30-second videos to be used as a demonstration when exhibiting the device. In the second step, I attached a camera to a head mount to output a real time video of my eye blinking. In the third step, I created a Max patch that used the video feed of my eye as a trigger to play my pre-recorded clips. The final result was an evocative non-linear narrative of past personal experiences, and the development of the narrative itself is similar to the way in which humans recall memories. The visuals of the blinking eye were placed adjacent to the pre-recorded footage in order to mimic the positioning of two eyes on a face; one side of the display shows my actual eye, and the other side signifies looking back on what my eye has seen. The intended effect was to generate an awareness of the breaks in our vision and how this influences our existence.
ContributorsYoshisato, Sarah Hanako (Author) / Connell, Ellery (Thesis director) / Gharavi, Lance (Committee member) / Tinapple, David (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2014-05