Matching Items (16)
Filtering by

Clear all filters

126599-Thumbnail Image.png
Description

For waste management in Asunción, Paraguay to improve, so too must the rate of public recycling participation. However, due to minimal public waste management infrastructure, it is up to individual citizens and the private sector to develop recycling solutions in the city. One social enterprise called Soluciones Ecológicas (SE) has

For waste management in Asunción, Paraguay to improve, so too must the rate of public recycling participation. However, due to minimal public waste management infrastructure, it is up to individual citizens and the private sector to develop recycling solutions in the city. One social enterprise called Soluciones Ecológicas (SE) has deployed a system of drop-off recycling stations called ecopuntos, which allow residents to deposit their paper and cardboard, plastic, and aluminum. For SE to maximize the use of its ecopuntos, it must understand the perceived barriers to, and benefits of, their use. To identify these barriers and benefits, a doer on-doer survey based on the behavioral determinants outlined in the Designing for Behavior Change Framework was distributed among Asunción residents. Results showed that perceived self-efficacy, perceived social norms, and perceived positive consequences – as well as age – were influential in shaping ecopunto use. Other determinants such as perceived negative consequences, access, and universal motivators were significant predictors of gender and age. SE and other institutions looking to improve recycling can use these results to design effective behavior change interventions.

ContributorsLoPrete, Eric (Author) / Klinsky, Sonja (Contributor) / Fischer, Daniel (Contributor) / Wiek, Arnim (Contributor)
Created2020-04-24
Description
Multi-scalar, integrated and transformational solutions are necessary to address the complex problems of climate change and sustainable development. Cities are using urban living labs to develop and test such solutions; however, the pace of transformation does not yet match the urgency of the problems at hand. In business, accelerators are

Multi-scalar, integrated and transformational solutions are necessary to address the complex problems of climate change and sustainable development. Cities are using urban living labs to develop and test such solutions; however, the pace of transformation does not yet match the urgency of the problems at hand. In business, accelerators are used to advance new and potentially transformational enterprises, giving fresh ideas an advantage over more established competition, thereby accelerating the pace of change. This article examines the accelerator model and considers its adaptation to urban living labs. From the literature, a multi-scalar business accelerator model is proposed that addresses both individual and system interventions to advance sustainability transformations. Also proposed is a formative-evaluation framework to guide effective implementation of the accelerator model. This article concludes with recommendations for scholars and practitioners working on urban living labs to utilize business accelerators to advance sustainability transformations.
ContributorsMack, Ashley (Author) / Whithycombe Keeler, Lauren (Contributor, Contributor) / Wiek, Arnim (Contributor) / von Wehrden, Henrik (Contributor)
Created2019-04-24
141006-Thumbnail Image.png
Description
The next generation will be better prepared to cope with the daunting sustainability challenges if education for sustainable development is being taught and learned across educational sectors. K-12 school education will play a pivotal role in this process, most prominently, the teachers serving at these schools. While pre-service teachers’ education

The next generation will be better prepared to cope with the daunting sustainability challenges if education for sustainable development is being taught and learned across educational sectors. K-12 school education will play a pivotal role in this process, most prominently, the teachers serving at these schools. While pre-service teachers’ education will contribute to this transition, success will depend on effective professional development in sustainability education to teachers currently in service. Arizona State University has pioneered the development and delivery of such a programme. We present the design principles, the programme, and insights from its initial applications that involved 246 K-12 in-service teachers from across the USA. The evaluation results indicate that due to participation in the programme, sustainability knowledge, perception of self-efficacy, inclusion of sustainability in the classroom, modelling of sustainable behaviours, and linking action to content all increased. We conclude with recommendations for the widespread adopting of the programme.
ContributorsRedman, Erin (Author) / Redman, Aaron (Author) / Wiek, Arnim (Author)
Created2018-07-13
130375-Thumbnail Image.png
Description
This article reviews the range of delivery platforms that have been developed for the PySAL open source Python library for spatial analysis. This includes traditional desktop software (with a graphical user interface, command line or embedded in a computational notebook), open spatial analytics middleware, and web, cloud and distributed open

This article reviews the range of delivery platforms that have been developed for the PySAL open source Python library for spatial analysis. This includes traditional desktop software (with a graphical user interface, command line or embedded in a computational notebook), open spatial analytics middleware, and web, cloud and distributed open geospatial analytics for decision support. A common thread throughout the discussion is the emphasis on openness, interoperability, and provenance management in a scientific workflow. The code base of the PySAL library provides the common computing framework underlying all delivery mechanisms.
ContributorsRey, Sergio (Author) / Anselin, Luc (Author) / Li, Xun (Author) / Pahle, Robert (Author) / Laura, Jason (Author) / Li, Wenwen (Author) / Koschinsky, Julia (Author) / College of Liberal Arts and Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Computational Spatial Science (Contributor)
Created2015-06-01
130391-Thumbnail Image.png
Description
Estimating and projecting population trends using population viability analysis (PVA) are central to identifying species at risk of extinction and for informing conservation management strategies. Models for PVA generally fall within two categories, scalar (count-based) or matrix (demographic). Model structure, process error, measurement error, and time series length all have

Estimating and projecting population trends using population viability analysis (PVA) are central to identifying species at risk of extinction and for informing conservation management strategies. Models for PVA generally fall within two categories, scalar (count-based) or matrix (demographic). Model structure, process error, measurement error, and time series length all have known impacts in population risk assessments, but their combined impact has not been thoroughly investigated. We tested the ability of scalar and matrix PVA models to predict percent decline over a ten-year interval, selected to coincide with the IUCN Red List criterion A. 3, using data simulated for a hypothetical, short-lived organism with a simple life-history and for a threatened snail, Tasmaphena lamproides. PVA performance was assessed across different time series lengths, population growth rates, and levels of process and measurement error. We found that the magnitude of effects of measurement error, process error, and time series length, and interactions between these, depended on context. We found that high process and measurement error reduced the reliability of both models in predicted percent decline. Both sources of error contributed strongly to biased predictions, with process error tending to contribute to the spread of predictions more than measurement error. Increasing time series length improved precision and reduced bias of predicted population trends, but gains substantially diminished for time series lengths greater than 10-15 years. The simple parameterization scheme we employed contributed strongly to bias in matrix model predictions when both process and measurement error were high, causing scalar models to exhibit similar or greater precision and lower bias than matrix models. Our study provides evidence that, for short-lived species with structured but simple life histories, short time series and simple models can be sufficient for reasonably reliable conservation decision-making, and may be preferable for population projections when unbiased estimates of vital rates cannot be obtained.
Created2015-07-15
130396-Thumbnail Image.png
Description

Aim
To establish a chronology for late Quaternary avian extinction, extirpation and persistence in the Bahamas, thereby testing the relative roles of climate change and human impact as causes of extinction.
Location
Great Abaco Island (Abaco), Bahamas, West Indies.
Methods
We analysed the resident bird community as sampled by Pleistocene (> 11.7 ka) and Holocene

Aim
To establish a chronology for late Quaternary avian extinction, extirpation and persistence in the Bahamas, thereby testing the relative roles of climate change and human impact as causes of extinction.
Location
Great Abaco Island (Abaco), Bahamas, West Indies.
Methods
We analysed the resident bird community as sampled by Pleistocene (> 11.7 ka) and Holocene (< 11.7 ka) fossils. Each species was classified as extinct (lost globally), extirpated (gone from Abaco but persists elsewhere), or extant (still resident on Abaco). We compared patterns of extinction, extirpation and persistence to independent estimates of climate and sea level for glacial (late Pleistocene) and interglacial (Holocene) times.
Results
Of 45 bird species identified in Pleistocene fossils, 25 (56%) no longer occur on Abaco (21 extirpated, 4 extinct). Of 37 species recorded in Holocene deposits, 15 (14 extirpated, 1 extinct; total 41%) no longer exist on Abaco. Of the 30 extant species, 12 were recovered as both Pleistocene and Holocene fossils, as were 9 of the 30 extirpated or extinct species. Most of the extinct or extirpated species that were only recorded from Pleistocene contexts are characteristic of open habitats (pine woodlands or grasslands); several of the extirpated species are currently found only where winters are cooler than in the modern or Pleistocene Bahamas. In contrast, most of the extinct or extirpated species recorded from Holocene contexts are habitat generalists.
Main conclusions
The fossil evidence suggests two main times of late Quaternary avian extirpation and extinction in the Bahamas. The first was during the Pleistocene–Holocene transition (PHT; 15–9 ka) and was fuelled by climate change and associated changes in sea level and island area. The second took place during the late Holocene (< 4 ka, perhaps primarily < 1 ka) and can be attributed to human impact. Although some species lost during the PHT are currently found where climates are cooler and drier than in the Bahamas today, a taxonomically and ecologically diverse set of species persisted through that major climate change but did not survive the past millennium of human presence.

Created2015-03-01
130330-Thumbnail Image.png
Description
Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study

Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study proposes and implements an integrated computational framework to support the modeling, semantic and spatial reasoning of change information with regard to space, time and topology. We first proposed a conceptual model to formally represent the spatiotemporal variation of change data, which is essential knowledge to support various environmental and social studies, such as deforestation and urbanization studies. Then, a spatial ontology was created to encode these semantic spatiotemporal data in a machine-understandable format. Based on the knowledge defined in the ontology and related reasoning rules, a semantic platform was developed to support the semantic query and change trajectory reasoning of areas with LULCC. This semantic platform is innovative, as it integrates semantic and spatial reasoning into a coherent computational and operational software framework to support automated semantic analysis of time series data that can go beyond LULC datasets. In addition, this system scales well as the amount of data increases, validated by a number of experimental results. This work contributes significantly to both the geospatial Semantic Web and GIScience communities in terms of the establishment of the (web-based) semantic platform for collaborative question answering and decision-making.
Created2016-10-25
130331-Thumbnail Image.png
Description
Urban economic modeling and effective spatial planning are critical tools towards achieving urban sustainability. However, in practice, many technical obstacles, such as information islands, poor documentation of data and lack of software platforms to facilitate virtual collaboration, are challenging the effectiveness of decision-making processes. In this paper, we report on

Urban economic modeling and effective spatial planning are critical tools towards achieving urban sustainability. However, in practice, many technical obstacles, such as information islands, poor documentation of data and lack of software platforms to facilitate virtual collaboration, are challenging the effectiveness of decision-making processes. In this paper, we report on our efforts to design and develop a geospatial cyberinfrastructure (GCI) for urban economic analysis and simulation. This GCI provides an operational graphic user interface, built upon a service-oriented architecture to allow (1) widespread sharing and seamless integration of distributed geospatial data; (2) an effective way to address the uncertainty and positional errors encountered in fusing data from diverse sources; (3) the decomposition of complex planning questions into atomic spatial analysis tasks and the generation of a web service chain to tackle such complex problems; and (4) capturing and representing provenance of geospatial data to trace its flow in the modeling task. The Greater Los Angeles Region serves as the test bed. We expect this work to contribute to effective spatial policy analysis and decision-making through the adoption of advanced GCI and to broaden the application coverage of GCI to include urban economic simulations.
Created2013-05-21
130335-Thumbnail Image.png
Description
A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective

A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective was to examine how life history traits, short-term global change perturbations, and long-term climate change interact to affect the likely persistence of an oak species - Quercus engelmannii (Engelmann oak). Specifically, we combined dynamic species distribution models, which predict suitable habitat, with stochastic, stage-based metapopulation models, which project population trajectories, to evaluate the effects of three global change factors – climate change, land use change, and altered fire frequency – emphasizing the roles of dispersal and seed predation. Our model predicted dramatic reduction in Q. engelmannii abundance, especially under drier climates and increased fire frequency. When masting lowers seed predation rates, decreased masting frequency leads to large abundance decreases. Current rates of dispersal are not likely to prevent these effects, although increased dispersal could mitigate population declines. The results suggest that habitat suitability predictions by themselves may under-estimate the impact of climate change for other species and locations.
ContributorsConlisk, Erin (Author) / Lawson, Dawn (Author) / Syphard, Alexandra D. (Author) / Franklin, Janet (Author) / Flint, Lorraine (Author) / Flint, Alan (Author) / Regan, Helen M. (Author) / College of Liberal Arts and Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2012-05-18
130287-Thumbnail Image.png
Description
Precipitation and temperature enact variable influences on vegetation, impacting the type and condition of land cover, as well as the assessment of change over broad landscapes. Separating the influence of vegetative variability independent and discrete land cover change remains a major challenge to landscape change assessments. The heterogeneous Lerma-Chapala-Santiago watershed

Precipitation and temperature enact variable influences on vegetation, impacting the type and condition of land cover, as well as the assessment of change over broad landscapes. Separating the influence of vegetative variability independent and discrete land cover change remains a major challenge to landscape change assessments. The heterogeneous Lerma-Chapala-Santiago watershed of central Mexico exemplifies both natural and anthropogenic forces enacting variability and change on the landscape. This study employed a time series of Enhanced Vegetation Index (EVI) composites from the Moderate Resolution Imaging Spectoradiometer (MODIS) for 2001–2007 and per-pixel multiple linear regressions in order to model changes in EVI as a function of precipitation, temperature, and elevation. Over the seven-year period, 59.1% of the variability in EVI was explained by variability in the independent variables, with highest model performance among changing and heterogeneous land cover types, while intact forest cover demonstrated the greatest resistance to changes in temperature and precipitation. Model results were compared to an independent change uncertainty assessment, and selected regional samples of change confusion and natural variability give insight to common problems afflicting land change analyses.
Created2016-06-07