
Background: Elucidating the role of the underlying risk factors for severe outcomes of the 2009 A/H1N1 influenza pandemic could be crucial to define priority risk groups in resource-limited settings in future pandemics.
Methods: We use individual-level clinical data on a large series of ARI (acute respiratory infection) hospitalizations from a prospective surveillance system of the Mexican Social Security medical system to analyze clinical features at presentation, admission delays, selected comorbidities and receipt of seasonal vaccine on the risk of A/H1N1-related death. We considered ARI hospitalizations and inpatient-deaths, and recorded demographic, geographic, and medical information on individual patients during August-December, 2009.
Results: Seasonal influenza vaccination was associated with a reduced risk of death among A/H1N1 inpatients (OR = 0.43 (95% CI: 0.25, 0.74)) after adjustment for age, gender, geography, antiviral treatment, admission delays, comorbidities and medical conditions. However, this result should be interpreted with caution as it could have been affected by factors not directly measured in our study. Moreover, the effect of antiviral treatment against A/H1N1 inpatient death did not reach statistical significance (OR = 0.56 (95% CI: 0.29, 1.10)) probably because only 8.9% of A/H1N1 inpatients received antiviral treatment. Moreover, diabetes (OR = 1.6) and immune suppression (OR = 2.3) were statistically significant risk factors for death whereas asthmatic persons (OR = 0.3) or pregnant women (OR = 0.4) experienced a reduced fatality rate among A/H1N1 inpatients. We also observed an increased risk of death among A/H1N1 inpatients with admission delays >2 days after symptom onset (OR = 2.7). Similar associations were also observed for A/H1N1-negative inpatients.
Conclusions: Geographical variation in identified medical risk factors including prevalence of diabetes and immune suppression may in part explain between-country differences in pandemic mortality burden. Furthermore, access to care including hospitalization without delay and antiviral treatment and are also important factors, as well as vaccination coverage with the 2008–09 trivalent inactivated influenza vaccine.

Background: The impact of socio-demographic factors and baseline health on the mortality burden of seasonal and pandemic influenza remains debated. Here we analyzed the spatial-temporal mortality patterns of the 1918 influenza pandemic in Spain, one of the countries of Europe that experienced the highest mortality burden.
Methods: We analyzed monthly death rates from respiratory diseases and all-causes across 49 provinces of Spain, including the Canary and Balearic Islands, during the period January-1915 to June-1919. We estimated the influenza-related excess death rates and risk of death relative to baseline mortality by pandemic wave and province. We then explored the association between pandemic excess mortality rates and health and socio-demographic factors, which included population size and age structure, population density, infant mortality rates, baseline death rates, and urbanization.
Results: Our analysis revealed high geographic heterogeneity in pandemic mortality impact. We identified 3 pandemic waves of varying timing and intensity covering the period from Jan-1918 to Jun-1919, with the highest pandemic-related excess mortality rates occurring during the months of October-November 1918 across all Spanish provinces. Cumulative excess mortality rates followed a south–north gradient after controlling for demographic factors, with the North experiencing highest excess mortality rates. A model that included latitude, population density, and the proportion of children living in provinces explained about 40% of the geographic variability in cumulative excess death rates during 1918–19, but different factors explained mortality variation in each wave.
Conclusions: A substantial fraction of the variability in excess mortality rates across Spanish provinces remained unexplained, which suggests that other unidentified factors such as comorbidities, climate and background immunity may have affected the 1918-19 pandemic mortality rates. Further archeo-epidemiological research should concentrate on identifying settings with combined availability of local historical mortality records and information on the prevalence of underlying risk factors, or patient-level clinical data, to further clarify the drivers of 1918 pandemic influenza mortality.

Background: Influenza viruses are a major cause of morbidity and mortality worldwide. Vaccination remains a powerful tool for preventing or mitigating influenza outbreaks. Yet, vaccine supplies and daily administration capacities are limited, even in developed countries. Understanding how such constraints can alter the mitigating effects of vaccination is a crucial part of influenza preparedness plans. Mathematical models provide tools for government and medical officials to assess the impact of different vaccination strategies and plan accordingly. However, many existing models of vaccination employ several questionable assumptions, including a rate of vaccination proportional to the population at each point in time.
Methods: We present a SIR-like model that explicitly takes into account vaccine supply and the number of vaccines administered per day and places data-informed limits on these parameters. We refer to this as the non-proportional model of vaccination and compare it to the proportional scheme typically found in the literature.
Results: The proportional and non-proportional models behave similarly for a few different vaccination scenarios. However, there are parameter regimes involving the vaccination campaign duration and daily supply limit for which the non-proportional model predicts smaller epidemics that peak later, but may last longer, than those of the proportional model. We also use the non-proportional model to predict the mitigating effects of variably timed vaccination campaigns for different levels of vaccination coverage, using specific constraints on daily administration capacity.
Conclusions: The non-proportional model of vaccination is a theoretical improvement that provides more accurate predictions of the mitigating effects of vaccination on influenza outbreaks than the proportional model. In addition, parameters such as vaccine supply and daily administration limit can be easily adjusted to simulate conditions in developed and developing nations with a wide variety of financial and medical resources. Finally, the model can be used by government and medical officials to create customized pandemic preparedness plans based on the supply and administration constraints of specific communities.

The Middle Stone Age (MSA) is associated with early evidence for symbolic material culture and complex technological innovations. However, one of the most visible aspects of MSA technologies are unretouched triangular stone points that appear in the archaeological record as early as 500,000 years ago in Africa and persist throughout the MSA. How these tools were being used and discarded across a changing Pleistocene landscape can provide insight into how MSA populations prioritized technological and foraging decisions. Creating inferential links between experimental and archaeological tool use helps to establish prehistoric tool function, but is complicated by the overlaying of post-depositional damage onto behaviorally worn tools. Taphonomic damage patterning can provide insight into site formation history, but may preclude behavioral interpretations of tool function. Here, multiple experimental processes that form edge damage on unretouched lithic points from taphonomic and behavioral processes are presented. These provide experimental distributions of wear on tool edges from known processes that are then quantitatively compared to the archaeological patterning of stone point edge damage from three MSA lithic assemblages—Kathu Pan 1, Pinnacle Point Cave 13B, and Die Kelders Cave 1. By using a model-fitting approach, the results presented here provide evidence for variable MSA behavioral strategies of stone point utilization on the landscape consistent with armature tips at KP1, and cutting tools at PP13B and DK1, as well as damage contributions from post-depositional sources across assemblages. This study provides a method with which landscape-scale questions of early modern human tool-use and site-use can be addressed.

There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5–6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change.
The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, ‘place provisioning’, longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.

We conducted a 12-month-long experiment in a financial services company to study how the availability of treadmill workstations affects employees’ physical activity and work performance. We enlisted sedentary volunteers, half of whom received treadmill workstations during the first two months of the study and the rest in the seventh month of the study. Participants could operate the treadmills at speeds of 0–2 mph and could use a standard chair-desk arrangement at will. (a) Weekly online performance surveys were administered to participants and their supervisors, as well as to all other sedentary employees and their supervisors. Using within-person statistical analyses, we find that overall work performance, quality and quantity of performance, and interactions with coworkers improved as a result of adoption of treadmill workstations. (b) Participants were outfitted with accelerometers at the start of the study. We find that daily total physical activity increased as a result of the adoption of treadmill workstations.

Background: Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a quantitative description of the age-specific morbidity pandemic patterns across administrative areas of Peru.
Methods: We used daily cases of influenza-like-illness, tests for A/H1N1 influenza virus infections, and laboratory-confirmed A/H1N1 influenza cases reported to the epidemiological surveillance system of Peru's Ministry of Health from May 1 to December 31, 2009. We analyzed the geographic spread of the pandemic waves and their association with the winter school vacation period, demographic factors, and absolute humidity. We also estimated the reproduction number and quantified the association between the winter school vacation period and the age distribution of cases.
Results: The national pandemic curve revealed a bimodal winter pandemic wave, with the first peak limited to school age children in the Lima metropolitan area, and the second peak more geographically widespread. The reproduction number was estimated at 1.6–2.2 for the Lima metropolitan area and 1.3–1.5 in the rest of Peru. We found a significant association between the timing of the school vacation period and changes in the age distribution of cases, while earlier pandemic onset was correlated with large population size. By contrast there was no association between pandemic dynamics and absolute humidity.
Conclusions: Our results indicate substantial spatial variation in pandemic patterns across Peru, with two pandemic waves of varying timing and impact by age and region. Moreover, the Peru data suggest a hierarchical transmission pattern of pandemic influenza A/H1N1 driven by large population centers. The higher reproduction number of the first pandemic wave could be explained by high contact rates among school-age children, the age group most affected during this early wave.

Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has been widely observed. However, systematic time-series analysis of incidence data is desirable to understand the seasonality of community acquired (CA)-MRSA infections at the population level. In this paper, using data on monthly SSTI incidence in children aged 0–19 years and enrolled in Medicaid in Maricopa County, Arizona, from January 2005 to December 2008, we carried out time-series and nonlinear regression analysis to determine the periodicity, trend, and peak timing in SSTI incidence in children at different age: 0-4 years, 5-9 years, 10-14 years, and 15-19 years. We also assessed the temporal correlation between SSTI incidence and meteorological variables including average temperature and humidity. Our analysis revealed a strong annual seasonal pattern of SSTI incidence with peak occurring in early September. This pattern was consistent across age groups. Moreover, SSTIs followed a significantly increasing trend over the 4-year study period with annual incidence increasing from 3.36% to 5.55% in our pediatric population of approximately 290,000. We also found a significant correlation between the temporal variation in SSTI incidence and mean temperature and specific humidity. Our findings could have potential implications on prevention and control efforts against CA-MRSA.

The large-scale use of antivirals during influenza pandemics poses a significant selection pressure for drug-resistant pathogens to emerge and spread in a population. This requires treatment strategies to minimize total infections as well as the emergence of resistance. Here we propose a mathematical model in which individuals infected with wild-type influenza, if treated, can develop de novo resistance and further spread the resistant pathogen. Our main purpose is to explore the impact of two important factors influencing treatment effectiveness: i) the relative transmissibility of the drug-resistant strain to wild-type, and ii) the frequency of de novo resistance. For the endemic scenario, we find a condition between these two parameters that indicates whether treatment regimes will be most beneficial at intermediate or more extreme values (e.g., the fraction of infected that are treated). Moreover, we present analytical expressions for effective treatment regimes and provide evidence of its applicability across a range of modeling scenarios: endemic behavior with deterministic homogeneous mixing, and single-epidemic behavior with deterministic homogeneous mixing and stochastic heterogeneous mixing. Therefore, our results provide insights for the control of drug-resistance in influenza across time scales.

Problem- and project-based learning (PPBL) courses in sustainability address real-world sustainability problems. They are considered powerful educational settings for building students’ sustainability expertise. In practice, however, these courses often fail to fully incorporate sustainability competencies, participatory research education, and experiential learning. Only few studies exist that compare and appraise PPBL courses internationally against a synthesized body of the literature to create an evidence base for designing PPBL courses. This article introduces a framework for PPBL courses in sustainability and reviews PPBL practice in six programs around the world (Europe, North America, Australia). Data was collected through semi-structured qualitative interviews with course instructors and program officers, as well as document analysis. Findings indicate that the reviewed PPBL courses are of high quality and carefully designed. Each PPBL course features innovative approaches to partnerships between the university and private organizations, extended peer-review, and the role of knowledge brokers. Yet, the findings also indicate weaknesses including paucity of critical learning objectives, solution-oriented research methodology, and follow-up research on implementation. Through the comparative design, the study reveals improvement strategies for the identified challenges and provides guidance for design and redesign of PPBL courses.