Filtering by
- Creators: School of Mathematical and Statistical Sciences
- Member of: Theses and Dissertations
Previous studies about the effects of regulatory institutions on the outcomes of regulation have resulted in a lack of consensus on the nature of these impacts. This paper seeks to resolve some of this ambiguity by analyzing two dimension of electric utility regulatory outcomes, prices and reliability, with a broader panel of explanatory variables and with a Hausman-Taylor regression technique. The results suggest that elected regulators and deregulated electricity markets result in worse reliability outcomes for consumers without strong evidence that either institution secures lower electricity prices. Incorporating these insights into a theoretical model of regulation could give more detailed insight into how to create regulatory institutions that can optimize the outcomes of governance.
With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular economy to reduce the amount of waste generated in shoe creation. We have designed a sandal that accommodates the rapid consumption element of fast fashion with a business model that promotes sustainability through a buy-back method to upcycle and retain our materials.
As America undergoes a modern, civil rights movement, the reality of police brutality can no longer be disregarded by everyday voters. The Black Lives Matter movement has become ubiquitous, both in real life and in the media, after the murder of George Floyd. This moment has made way for widespread video coverage of police brutality incidents, a litany of written think pieces dissecting the long-term effectiveness of the police, and a myriad of articles discussing prospective policy actions. With a rise in coverage comes a heightened level of awareness of and conversation around this issue. We have witnessed the pervasiveness of the Black Lives Matter movement and an increasing conversation around the allocation of funding towards police departments. Change has been sparked, but which form of media has most effectively influenced the public? Seeing as one of the principal goals of police-related advocacy groups is to fulfill their vision of a properly functioning police force, including in relation to accountability and reform, it is vital to understand which medium the public is most receptive to. This study and its design serve to examine how exposure to different media regarding police brutality affects people’s opinions on Black Lives Matter, police reform policies, and similar changes. Moving forward, social movements will have a better understanding of which types of media can best target the public when trying to coalesce support around their movement.
Actuaries can analyze healthcare trends to determine if rates are reasonable and if reserves are adequate. In this talk, we will provide a framework of methods to analyze the healthcare trend during the pandemic. COVID-19 may influence future healthcare cost trends in many ways. First, direct COVID-19 costs may increase the amount of total experienced healthcare costs. However, with the implementation of social distancing, the amount of regularly scheduled care may be deferred to a future date. There are also many unknown factors regarding the transmission of the virus. Implementing epidemiology models allows us to predict infections by studying the dynamics of the disease. The correlation between infection amounts and hospitalization occupancies provide a methodology to estimate the amount of deferred and recouped amounts of regularly scheduled healthcare costs. Thus, the combination of the models allows to model the healthcare cost trend impact due to COVID-19.
In collaboration with Moog Broad Reach and Arizona State University, a<br/>team of five undergraduate students designed a hardware design solution for<br/>protecting flash memory data in a spaced-based radioactive environment. Team<br/>Aegis have been working on the research, design, and implementation of a<br/>Verilog- and Python-based error correction code using a Reed-Solomon method<br/>to identify bit changes of error code. For an additional senior design project, a<br/>Python code was implemented that runs statistical analysis to identify whether<br/>the error correction code is more effective than a triple-redundancy check as well<br/>as determining if the presence of errors can be modeled by a regression model.
This thesis project is part of a larger collaboration documenting the history of the ASU Biodesign Clinical Testing Laboratory (ABCTL). There are many different aspects that need to be considered when transforming to a clinical testing laboratory. This includes the different types of tests performed in the laboratory. In addition to the diagnostic polymerase chain reaction (PCR) test that is performed detecting the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), antibody testing is also performed in clinical laboratories. Antibody testing is used to detect a previous infection. Antibodies are produced as part of the immune response against SARS-CoV-2. There are many different forms of antibody tests and their sensitives and specificities have been examined and reviewed in the literature. Antibody testing can be used to determine the seroprevalence of the disease which can inform policy decisions regarding public health strategies. The results from antibody testing can also be used for creating new therapeutics like vaccines. The ABCTL recognizes the shifting need of the community to begin testing for previous infections of SARS-CoV-2 and is developing new forms of antibody testing that can meet them.
In this project, I examined the relationship between lockdowns implemented by COVID-19 and the activity of animals in urban areas. I hypothesized that animals became more active in urban areas during COVID-19 quarantine than they were before and I wanted to see if my hypothesis could be researched through Twitter crowdsourcing. I began by collecting tweets using python code, but upon examining all data output from code-based searches, I concluded that it is quicker and more efficient to use the advanced search on Twitter website. Based on my research, I can neither confirm nor deny if the appearance of wild animals is due to the COVID-19 lockdowns. However, I was able to discover a correlational relationship between these two factors in some research cases. Although my findings are mixed with regard to my original hypothesis, the impact that this phenomenon had on society cannot be denied.
The COVID-19 pandemic has resulted in preventative measures and has led to extensive changes in lifestyle for the vast majority of the American population. As the pandemic progresses, a growing amount of evidence shows that minority groups, such as the Deaf community, are often disproportionately and uniquely affected. Deaf people are directly affected in their ability to personally socialize and continue with daily routines. More specifically, this can constitute their ability to meet new people, connect with friends/family, and to perform in their work or learning environment. It also may result in further mental health changes and an increased reliance on technology. The impact of COVID-19 on the Deaf community in clinical settings must also be considered. This includes changes in policies for in-person interpreters and a rise in telehealth. Often, these effects can be representative of the pre-existing low health literacy, frequency of miscommunication, poor treatment, and the inconvenience felt by Deaf people when trying to access healthcare. Ultimately, these effects on the Deaf community must be taken into account when attempting to create a full picture of the societal shift caused by COVID-19.
Optimal foraging theory provides a suite of tools that model the best way that an animal will <br/>structure its searching and processing decisions in uncertain environments. It has been <br/>successful characterizing real patterns of animal decision making, thereby providing insights<br/>into why animals behave the way they do. However, it does not speak to how animals make<br/>decisions that tend to be adaptive. Using simulation studies, prior work has shown empirically<br/>that a simple decision-making heuristic tends to produce prey-choice behaviors that, on <br/>average, match the predicted behaviors of optimal foraging theory. That heuristic chooses<br/>to spend time processing an encountered prey item if that prey item's marginal rate of<br/>caloric gain (in calories per unit of processing time) is greater than the forager's<br/>current long-term rate of accumulated caloric gain (in calories per unit of total searching<br/>and processing time). Although this heuristic may seem intuitive, a rigorous mathematical<br/>argument for why it tends to produce the theorized optimal foraging theory behavior has<br/>not been developed. In this thesis, an analytical argument is given for why this<br/>simple decision-making heuristic is expected to realize the optimal performance<br/>predicted by optimal foraging theory. This theoretical guarantee not only provides support<br/>for why such a heuristic might be favored by natural selection, but it also provides<br/>support for why such a heuristic might a reliable tool for decision-making in autonomous<br/>engineered agents moving through theatres of uncertain rewards. Ultimately, this simple<br/>decision-making heuristic may provide a recipe for reinforcement learning in small robots<br/>with little computational capabilities.
This survey takes information on a participant’s beliefs on privacy security, the general digital knowledge, demographics, and willingness-to-pay points on if they would delete information on their social media, to see how an information treatment affects those payment points. This information treatment is meant to make half of the participants think about the deeper ramifications of the information they reveal. The initial hypothesis is that this information will make people want to pay more to remove their information from the web, but the results find a surprising negative correlation with the treatment.