Matching Items (37)
Description

Background: Ebola is one of the most virulent human viral diseases, with a case fatality ratio between 25% to 90%. The 2014 West African outbreaks are the largest and worst in history. There is no specific treatment or effective/safe vaccine against the disease. Hence, control efforts are restricted to basic

Background: Ebola is one of the most virulent human viral diseases, with a case fatality ratio between 25% to 90%. The 2014 West African outbreaks are the largest and worst in history. There is no specific treatment or effective/safe vaccine against the disease. Hence, control efforts are restricted to basic public health preventive (non-pharmaceutical) measures. Such efforts are undermined by traditional/cultural belief systems and customs, characterized by general mistrust and skepticism against government efforts to combat the disease. This study assesses the roles of traditional customs and public healthcare systems on the disease spread.

Methods: A mathematical model is designed and used to assess population-level impact of basic non-pharmaceutical control measures on the 2014 Ebola outbreaks. The model incorporates the effects of traditional belief systems and customs, along with disease transmission within health-care settings and by Ebola-deceased individuals. A sensitivity analysis is performed to determine model parameters that most affect disease transmission. The model is parameterized using data from Guinea, one of the three Ebola-stricken countries. Numerical simulations are performed and the parameters that drive disease transmission, with or without basic public health control measures, determined. Three effectiveness levels of such basic measures are considered.

Results: The distribution of the basic reproduction number (R0) for Guinea (in the absence of basic control measures) is such that R 0 ∈ [0.77,1.35], for the case when the belief systems do not result in more unreported Ebola cases. When such systems inhibit control efforts, the distribution increases to R 0 ∈ [1.15,2.05]. The total Ebola cases are contributed by Ebola-deceased individuals (22%), symptomatic individuals in the early (33%) and latter (45%) infection stages. A significant reduction of new Ebola cases can be achieved by increasing health-care workers’ daily shifts from 8 to 24 hours, limiting hospital visitation to 1 hour and educating the populace to abandon detrimental traditional/cultural belief systems.

Conclusions: The 2014 outbreaks are controllable using a moderately-effective basic public health intervention strategy alone. A much higher (>50%) disease burden would have been recorded in the absence of such intervention.

Created2015-04-23
Description

In this paper, we present a visual analytics approach that provides decision makers with a proactive and predictive environment in order to assist them in making effective resource allocation and deployment decisions. The challenges involved with such predictive analytics processes include end-users' understanding, and the application of the underlying statistical

In this paper, we present a visual analytics approach that provides decision makers with a proactive and predictive environment in order to assist them in making effective resource allocation and deployment decisions. The challenges involved with such predictive analytics processes include end-users' understanding, and the application of the underlying statistical algorithms at the right spatiotemporal granularity levels so that good prediction estimates can be established. In our approach, we provide analysts with a suite of natural scale templates and methods that enable them to focus and drill down to appropriate geospatial and temporal resolution levels. Our forecasting technique is based on the Seasonal Trend decomposition based on Loess (STL) method, which we apply in a spatiotemporal visual analytics context to provide analysts with predicted levels of future activity. We also present a novel kernel density estimation technique we have developed, in which the prediction process is influenced by the spatial correlation of recent incidents at nearby locations. We demonstrate our techniques by applying our methodology to Criminal, Traffic and Civil (CTC) incident datasets.

Created2014-12-01
Description

Background: Dengue fever is a mosquito-borne disease that affects between 50 and 100 million people each year. Increasing our understanding of the heterogeneous transmission patterns of dengue at different spatial scales could have considerable public health value by guiding intervention strategies.

Methods: Based on the weekly number of dengue cases in Perú by

Background: Dengue fever is a mosquito-borne disease that affects between 50 and 100 million people each year. Increasing our understanding of the heterogeneous transmission patterns of dengue at different spatial scales could have considerable public health value by guiding intervention strategies.

Methods: Based on the weekly number of dengue cases in Perú by province, we investigated the association between dengue incidence during the period 1994-2008 and demographic and climate factors across geographic regions of the country.

Results: Our findings support the presence of significant differences in the timing of dengue epidemics between jungle and coastal regions, with differences significantly associated with the timing of the seasonal cycle of mean temperature.

Conclusions: Dengue is highly persistent in jungle areas of Perú where epidemics peak most frequently around March when rainfall is abundant. Differences in the timing of dengue epidemics in jungle and coastal regions are significantly associated with the seasonal temperature cycle. Our results suggest that dengue is frequently imported into coastal regions through infective sparks from endemic jungle areas and/or cities of other neighboring endemic countries, where propitious environmental conditions promote year-round mosquito breeding sites. If jungle endemic areas are responsible for multiple dengue introductions into coastal areas, our findings suggest that curtailing the transmission of dengue in these most persistent areas could lead to significant reductions in dengue incidence in coastal areas where dengue incidence typically reaches low levels during the dry season.

Created2011-06-08
Description

Background: The role of demographic factors, climatic conditions, school cycles, and connectivity patterns in shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the spatial, age and temporal evolution of the 2009 A/H1N1 influenza pandemic in Chile, a southern hemisphere country covering a long and narrow

Background: The role of demographic factors, climatic conditions, school cycles, and connectivity patterns in shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the spatial, age and temporal evolution of the 2009 A/H1N1 influenza pandemic in Chile, a southern hemisphere country covering a long and narrow strip comprising latitudes 17°S to 56°S.

Methods: We analyzed the dissemination patterns of the 2009 A/H1N1 pandemic across 15 regions of Chile based on daily hospitalizations for severe acute respiratory disease and laboratory confirmed A/H1N1 influenza infection from 01-May to 31-December, 2009. We explored the association between timing of pandemic onset and peak pandemic activity and several geographical and demographic indicators, school vacations, climatic factors, and international passengers. We also estimated the reproduction number (R) based on the growth rate of the exponential pandemic phase by date of symptoms onset, estimated using maximum likelihood methods.

Results: While earlier pandemic onset was associated with larger population size, there was no association with connectivity, demographic, school or climatic factors. In contrast, there was a latitudinal gradient in peak pandemic timing, representing a 16-39-day lag in disease activity from the southern regions relative to the northernmost region (P < 0.001). Geographical differences in latitude of Chilean regions, maximum temperature and specific humidity explained 68.5% of the variability in peak timing (P = 0.01). In addition, there was a decreasing gradient in reproduction number from south to north Chile (P < 0.0001). The regional mean R estimates were 1.6-2.0, 1.3-1.5, and 1.2-1.3 for southern, central and northern regions, respectively, which were not affected by the winter vacation period.

Conclusions: There was a lag in the period of most intense 2009 pandemic influenza activity following a South to North traveling pattern across regions of Chile, significantly associated with geographical differences in minimum temperature and specific humidity. The latitudinal gradient in timing of pandemic activity was accompanied by a gradient in reproduction number (P < 0.0001). Intensified surveillance strategies in colder and drier southern regions could lead to earlier detection of pandemic influenza viruses and improved control outcomes.

Created2012-11-13
Description

Background: Increasing our understanding of the factors affecting the severity of the 2009 A/H1N1 influenza pandemic in different regions of the world could lead to improved clinical practice and mitigation strategies for future influenza pandemics. Even though a number of studies have shed light into the risk factors associated with severe

Background: Increasing our understanding of the factors affecting the severity of the 2009 A/H1N1 influenza pandemic in different regions of the world could lead to improved clinical practice and mitigation strategies for future influenza pandemics. Even though a number of studies have shed light into the risk factors associated with severe outcomes of 2009 A/H1N1 influenza infections in different populations (e.g., [1-5]), analyses of the determinants of mortality risk spanning multiple pandemic waves and geographic regions are scarce. Between-country differences in the mortality burden of the 2009 pandemic could be linked to differences in influenza case management, underlying population health, or intrinsic differences in disease transmission [6]. Additional studies elucidating the determinants of disease severity globally are warranted to guide prevention efforts in future influenza pandemics.

In Mexico, the 2009 A/H1N1 influenza pandemic was characterized by a three-wave pattern occurring in the spring, summer, and fall of 2009 with substantial geographical heterogeneity [7]. A recent study suggests that Mexico experienced high excess mortality burden during the 2009 A/H1N1 influenza pandemic relative to other countries [6]. However, an assessment of potential factors that contributed to the relatively high pandemic death toll in Mexico are lacking. Here, we fill this gap by analyzing a large series of laboratory-confirmed A/H1N1 influenza cases, hospitalizations, and deaths monitored by the Mexican Social Security medical system during April 1 through December 31, 2009 in Mexico. In particular, we quantify the association between disease severity, hospital admission delays, and neuraminidase inhibitor use by demographic characteristics, pandemic wave, and geographic regions of Mexico.

Methods: We analyzed a large series of laboratory-confirmed pandemic A/H1N1 influenza cases from a prospective surveillance system maintained by the Mexican Social Security system, April-December 2009. We considered a spectrum of disease severity encompassing outpatient visits, hospitalizations, and deaths, and recorded demographic and geographic information on individual patients. We assessed the impact of neuraminidase inhibitor treatment and hospital admission delay (≤ > 2 days after disease onset) on the risk of death by multivariate logistic regression.

Results: Approximately 50% of all A/H1N1-positive patients received antiviral medication during the Spring and Summer 2009 pandemic waves in Mexico while only 9% of A/H1N1 cases received antiviral medications during the fall wave (P < 0.0001). After adjustment for age, gender, and geography, antiviral treatment significantly reduced the risk of death (OR = 0.52 (95% CI: 0.30, 0.90)) while longer hospital admission delays increased the risk of death by 2.8-fold (95% CI: 2.25, 3.41).

Conclusions: Our findings underscore the potential impact of decreasing admission delays and increasing antiviral use to mitigate the mortality burden of future influenza pandemics.

Created2012-04-20
Description

Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et

Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species.

Created2013-10-25
Description

Background:
Pandemic influenza is said to 'shift mortality' to younger age groups; but also to spare a subpopulation of the elderly population. Does one of these effects dominate? Might this have important ramifications?

Methods: We estimated age-specific excess mortality rates for all-years for which data were available in the 20th century for Australia,

Background:
Pandemic influenza is said to 'shift mortality' to younger age groups; but also to spare a subpopulation of the elderly population. Does one of these effects dominate? Might this have important ramifications?

Methods: We estimated age-specific excess mortality rates for all-years for which data were available in the 20th century for Australia, Canada, France, Japan, the UK, and the USA for people older than 44 years of age. We modeled variation with age, and standardized estimates to allow direct comparison across age groups and countries. Attack rate data for four pandemics were assembled.

Results: For nearly all seasons, an exponential model characterized mortality data extremely well. For seasons of emergence and a variable number of seasons following, however, a subpopulation above a threshold age invariably enjoyed reduced mortality. 'Immune escape', a stepwise increase in mortality among the oldest elderly, was observed a number of seasons after both the A(H2N2) and A(H3N2) pandemics. The number of seasons from emergence to escape varied by country. For the latter pandemic, mortality rates in four countries increased for younger age groups but only in the season following that of emergence. Adaptation to both emergent viruses was apparent as a progressive decrease in mortality rates, which, with two exceptions, was seen only in younger age groups. Pandemic attack rate variation with age was estimated to be similar across four pandemics with very different mortality impact.

Conclusions: In all influenza pandemics of the 20th century, emergent viruses resembled those that had circulated previously within the lifespan of then-living people. Such individuals were relatively immune to the emergent strain, but this immunity waned with mutation of the emergent virus. An immune subpopulation complicates and may invalidate vaccine trials. Pandemic influenza does not 'shift' mortality to younger age groups; rather, the mortality level is reset by the virulence of the emerging virus and is moderated by immunity of past experience. In this study, we found that after immune escape, older age groups showed no further mortality reduction, despite their being the principal target of conventional influenza vaccines. Vaccines incorporating variants of pandemic viruses seem to provide little benefit to those previously immune. If attack rates truly are similar across pandemics, it must be the case that immunity to the pandemic virus does not prevent infection, but only mitigates the consequences.

Created2012-12-12
Description

Antiviral resistance in influenza is rampant and has the possibility of causing major morbidity and mortality. Previous models have identified treatment regimes to minimize total infections and keep resistance low. However, the bulk of these studies have ignored stochasticity and heterogeneous contact structures. Here we develop a network model of

Antiviral resistance in influenza is rampant and has the possibility of causing major morbidity and mortality. Previous models have identified treatment regimes to minimize total infections and keep resistance low. However, the bulk of these studies have ignored stochasticity and heterogeneous contact structures. Here we develop a network model of influenza transmission with treatment and resistance, and present both standard mean-field approximations as well as simulated dynamics. We find differences in the final epidemic sizes for identical transmission parameters (bistability) leading to different optimal treatment timing depending on the number initially infected. We also find, contrary to previous results, that treatment targeted by number of contacts per individual (node degree) gives rise to more resistance at lower levels of treatment than non-targeted treatment. Finally we highlight important differences between the two methods of analysis (mean-field versus stochastic simulations), and show where traditional mean-field approximations fail. Our results have important implications not only for the timing and distribution of influenza chemotherapy, but also for mathematical epidemiological modeling in general. Antiviral resistance in influenza may carry large consequences for pandemic mitigation efforts, and models ignoring contact heterogeneity and stochasticity may provide misleading policy recommendations.

Created2013-02-07
Description

Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a major cause of skin and soft tissue infections (SSTIs) in the US. We developed an age-structured compartmental model to study the spread of CA-MRSA at the population level and assess the effect of control intervention strategies. We used Monte-Carlo Markov Chain

Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a major cause of skin and soft tissue infections (SSTIs) in the US. We developed an age-structured compartmental model to study the spread of CA-MRSA at the population level and assess the effect of control intervention strategies. We used Monte-Carlo Markov Chain (MCMC) techniques to parameterize our model using monthly time series data on SSTIs incidence in children (≤19 years) during January 2004 -December 2006 in Maricopa County, Arizona. Our model-based forecast for the period January 2007–December 2008 also provided a good fit to data. We also carried out an uncertainty and sensitivity analysis on the control reproduction number, Rc which we estimated at 1.3 (95% CI [1.2,1.4]) based on the model fit to data. Using our calibrated model, we evaluated the effect of typical intervention strategies namely reducing the contact rate of infected individuals owing to awareness of infection and decolonization strategies targeting symptomatic infected individuals on both and the long-term disease dynamics. We also evaluated the impact of hypothetical decolonization strategies targeting asymptomatic colonized individuals. We found that strategies focused on infected individuals were not capable of achieving disease control when implemented alone or in combination. In contrast, our results suggest that decolonization strategies targeting the pediatric population colonized with CA-MRSA have the potential of achieving disease elimination.

Created2013-11-21
Description

We formulate an in silico model of pathogen avoidance mechanism and investigate its impact on defensive behavioural measures (e.g., spontaneous social exclusions and distancing, crowd avoidance and voluntary vaccination adaptation). In particular, we use SIR(B)S (e.g., susceptible-infected-recovered with additional behavioural component) model to investigate the impact of homo-psychologicus aspects of

We formulate an in silico model of pathogen avoidance mechanism and investigate its impact on defensive behavioural measures (e.g., spontaneous social exclusions and distancing, crowd avoidance and voluntary vaccination adaptation). In particular, we use SIR(B)S (e.g., susceptible-infected-recovered with additional behavioural component) model to investigate the impact of homo-psychologicus aspects of epidemics. We focus on reactionary behavioural changes, which apply to both social distancing and voluntary vaccination participations. Our analyses reveal complex relationships between spontaneous and uncoordinated behavioural changes, the emergence of its contagion properties, and mitigation of infectious diseases. We find that the presence of effective behavioural changes can impede the persistence of disease. Furthermore, it was found that under perfect effective behavioural change, there are three regions in the response factor (e.g., imitation and/or reactionary) and behavioural scale factor (e.g., global/local) factors ρ–α behavioural space. Mainly, (1) disease is always endemic even in the presence of behavioural change, (2) behavioural-prevalence plasticity is observed and disease can sometimes be eradication, and (3) elimination of endemic disease under permanence of permanent behavioural change is achieved. These results suggest that preventive behavioural changes (e.g., non-pharmaceutical prophylactic measures, social distancing and exclusion, crowd avoidance) are influenced by individual differences in perception of risks and are a salient feature of epidemics. Additionally, these findings indicates that care needs to be taken when considering the effect of adaptive behavioural change in predicting the course of epidemics, and as well as the interpretation and development of the public health measures that account for spontaneous behavioural changes.

Created2015-10-14