Matching Items (60)
Filtering by
- Member of: Theses and Dissertations
- Member of: ASU Regents' Professors Open Access Works

Learning Sparse Representations for Fruit-Fly Gene Expression Pattern Image Annotation and Retrieval
Description
Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
ContributorsYuan, Lei (Author) / Woodard, Alexander (Author) / Ji, Shuiwang (Author) / Jiang, Yuan (Author) / Zhou, Zhi-Hua (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / Ira A. Fulton School of Engineering (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2012-05-23

Description
Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
ContributorsSun, Qian (Author) / Muckatira, Sherin (Author) / Yuan, Lei (Author) / Ji, Shuiwang (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2013-12-03
Description
Twitter has become a very popular social media site that is used daily by many people and organizations. This paper will focus on the financial aspect of Twitter, as a process will be shown to be able to mine data about specific companies' stock prices. This was done by writing a program to grab tweets about the stocks of the thirty companies in the Dow Jones.
ContributorsLarson, Grant Elliott (Author) / Davulcu, Hasan (Thesis director) / Ye, Jieping (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05

Description
Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution, but we may have plenty of labeled data from one or multiple related sources with different distributions. Due to its capability of migrating knowledge from related domains, transfer learning has shown to be effective for cross-domain learning problems. In this dissertation, I carry out research along this direction with a particular focus on designing efficient and effective algorithms for BioImaging and Bilingual applications. Specifically, I propose deep transfer learning algorithms which combine transfer learning and deep learning to improve image annotation performance. Firstly, I propose to generate the deep features for the Drosophila embryo images via pretrained deep models and build linear classifiers on top of the deep features. Secondly, I propose to fine-tune the pretrained model with a small amount of labeled images. The time complexity and performance of deep transfer learning methodologies are investigated. Promising results have demonstrated the knowledge transfer ability of proposed deep transfer algorithms. Moreover, I propose a novel Robust Principal Component Analysis (RPCA) approach to process the noisy images in advance. In addition, I also present a two-stage re-weighting framework for general domain adaptation problems. The distribution of source domain is mapped towards the target domain in the first stage, and an adaptive learning model is proposed in the second stage to incorporate label information from the target domain if it is available. Then the proposed model is applied to tackle cross lingual spam detection problem at LinkedIn’s website. Our experimental results on real data demonstrate the efficiency and effectiveness of the proposed algorithms.
ContributorsSun, Qian (Author) / Ye, Jieping (Committee member) / Xue, Guoliang (Committee member) / Liu, Huan (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2015

Description
One of the most remarkable outcomes resulting from the evolution of the web into Web 2.0, has been the propelling of blogging into a widely adopted and globally accepted phenomenon. While the unprecedented growth of the Blogosphere has added diversity and enriched the media, it has also added complexity. To cope with the relentless expansion, many enthusiastic bloggers have embarked on voluntarily writing, tagging, labeling, and cataloguing their posts in hopes of reaching the widest possible audience. Unbeknown to them, this reaching-for-others process triggers the generation of a new kind of collective wisdom, a result of shared collaboration, and the exchange of ideas, purpose, and objectives, through the formation of associations, links, and relations. Mastering an understanding of the Blogosphere can greatly help facilitate the needs of the ever growing number of these users, as well as producers, service providers, and advertisers into facilitation of the categorization and navigation of this vast environment. This work explores a novel method to leverage the collective wisdom from the infused label space for blog search and discovery. The work demonstrates that the wisdom space can provide a most unique and desirable framework to which to discover the highly sought after background information that could aid in the building of classifiers. This work incorporates this insight into the construction of a better clustering of blogs which boosts the performance of classifiers for identifying more relevant labels for blogs, and offers a mechanism that can be incorporated into replacing spurious labels and mislabels in a multi-labeled space.
ContributorsGalan, Magdiel F (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015

Description
Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and virtualized manner. Computer Simulations are widely utilized to analyze the behaviors of software and test them before fully implementations. Simulation can further benefit SaaS application in a cost-effective way taking the advantages of cloud such as customizability, configurability and multi-tendency.
This research introduces Modeling, Simulation and Analysis for Software-as-Service in Cloud. The researches cover the following topics: service modeling, policy specification, code generation, dynamic simulation, timing, event and log analysis. Moreover, the framework integrates current advantages of cloud: configurability, Multi-Tenancy, scalability and recoverability.
The following chapters are provided in the architecture:
Multi-Tenancy Simulation Software-as-a-Service.
Policy Specification for MTA simulation environment.
Model Driven PaaS Based SaaS modeling.
Dynamic analysis and dynamic calibration for timing analysis.
Event-driven Service-Oriented Simulation Framework.
LTBD: A Triage Solution for SaaS.
This research introduces Modeling, Simulation and Analysis for Software-as-Service in Cloud. The researches cover the following topics: service modeling, policy specification, code generation, dynamic simulation, timing, event and log analysis. Moreover, the framework integrates current advantages of cloud: configurability, Multi-Tenancy, scalability and recoverability.
The following chapters are provided in the architecture:
Multi-Tenancy Simulation Software-as-a-Service.
Policy Specification for MTA simulation environment.
Model Driven PaaS Based SaaS modeling.
Dynamic analysis and dynamic calibration for timing analysis.
Event-driven Service-Oriented Simulation Framework.
LTBD: A Triage Solution for SaaS.
ContributorsLi, Wu (Author) / Tsai, Wei-Tek (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Ye, Jieping (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2015

Description
Understanding the complexity of temporal and spatial characteristics of gene expression over brain development is one of the crucial research topics in neuroscience. An accurate description of the locations and expression status of relative genes requires extensive experiment resources. The Allen Developing Mouse Brain Atlas provides a large number of in situ hybridization (ISH) images of gene expression over seven different mouse brain developmental stages. Studying mouse brain models helps us understand the gene expressions in human brains. This atlas collects about thousands of genes and now they are manually annotated by biologists. Due to the high labor cost of manual annotation, investigating an efficient approach to perform automated gene expression annotation on mouse brain images becomes necessary. In this thesis, a novel efficient approach based on machine learning framework is proposed. Features are extracted from raw brain images, and both binary classification and multi-class classification models are built with some supervised learning methods. To generate features, one of the most adopted methods in current research effort is to apply the bag-of-words (BoW) algorithm. However, both the efficiency and the accuracy of BoW are not outstanding when dealing with large-scale data. Thus, an augmented sparse coding method, which is called Stochastic Coordinate Coding, is adopted to generate high-level features in this thesis. In addition, a new multi-label classification model is proposed in this thesis. Label hierarchy is built based on the given brain ontology structure. Experiments have been conducted on the atlas and the results show that this approach is efficient and classifies the images with a relatively higher accuracy.
ContributorsZhao, Xinlin (Author) / Ye, Jieping (Thesis advisor) / Wang, Yalin (Thesis advisor) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2016

Description
With the rise of social media, hundreds of millions of people spend countless hours all over the globe on social media to connect, interact, share, and create user-generated data. This rich environment provides tremendous opportunities for many different players to easily and effectively reach out to people, interact with them, influence them, or get their opinions. There are two pieces of information that attract most attention on social media sites, including user preferences and interactions. Businesses and organizations use this information to better understand and therefore provide customized services to social media users. This data can be used for different purposes such as, targeted advertisement, product recommendation, or even opinion mining. Social media sites use this information to better serve their users.
Despite the importance of personal information, in many cases people do not reveal this information to the public. Predicting the hidden or missing information is a common response to this challenge. In this thesis, we address the problem of predicting user attributes and future or missing links using an egocentric approach. The current research proposes novel concepts and approaches to better understand social media users in twofold including, a) their attributes, preferences, and interests, and b) their future or missing connections and interactions. More specifically, the contributions of this dissertation are (1) proposing a framework to study social media users through their attributes and link information, (2) proposing a scalable algorithm to predict user preferences; and (3) proposing a novel approach to predict attributes and links with limited information. The proposed algorithms use an egocentric approach to improve the state of the art algorithms in two directions. First by improving the prediction accuracy, and second, by increasing the scalability of the algorithms.
Despite the importance of personal information, in many cases people do not reveal this information to the public. Predicting the hidden or missing information is a common response to this challenge. In this thesis, we address the problem of predicting user attributes and future or missing links using an egocentric approach. The current research proposes novel concepts and approaches to better understand social media users in twofold including, a) their attributes, preferences, and interests, and b) their future or missing connections and interactions. More specifically, the contributions of this dissertation are (1) proposing a framework to study social media users through their attributes and link information, (2) proposing a scalable algorithm to predict user preferences; and (3) proposing a novel approach to predict attributes and links with limited information. The proposed algorithms use an egocentric approach to improve the state of the art algorithms in two directions. First by improving the prediction accuracy, and second, by increasing the scalability of the algorithms.
ContributorsAbbasi, Mohammad Ali, 1975- (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Agarwal, Nitin (Committee member) / Arizona State University (Publisher)
Created2014

Description
A myriad of social media services are emerging in recent years that allow people to communicate and express themselves conveniently and easily. The pervasive use of social media generates massive data at an unprecedented rate. It becomes increasingly difficult for online users to find relevant information or, in other words, exacerbates the information overload problem. Meanwhile, users in social media can be both passive content consumers and active content producers, causing the quality of user-generated content can vary dramatically from excellence to abuse or spam, which results in a problem of information credibility. Trust, providing evidence about with whom users can trust to share information and from whom users can accept information without additional verification, plays a crucial role in helping online users collect relevant and reliable information. It has been proven to be an effective way to mitigate information overload and credibility problems and has attracted increasing attention.
As the conceptual counterpart of trust, distrust could be as important as trust and its value has been widely recognized by social sciences in the physical world. However, little attention is paid on distrust in social media. Social media differs from the physical world - (1) its data is passively observed, large-scale, incomplete, noisy and embedded with rich heterogeneous sources; and (2) distrust is generally unavailable in social media. These unique properties of social media present novel challenges for computing distrust in social media: (1) passively observed social media data does not provide necessary information social scientists use to understand distrust, how can I understand distrust in social media? (2) distrust is usually invisible in social media, how can I make invisible distrust visible by leveraging unique properties of social media data? and (3) little is known about distrust and its role in social media applications, how can distrust help make difference in social media applications?
The chief objective of this dissertation is to figure out solutions to these challenges via innovative research and novel methods. In particular, computational tasks are designed to {\it understand distrust}, a innovative task, i.e., {\it predicting distrust} is proposed with novel frameworks to make invisible distrust visible, and principled approaches are develop to {\it apply distrust} in social media applications. Since distrust is a special type of negative links, I demonstrate the generalization of properties and algorithms of distrust to negative links, i.e., {\it generalizing findings of distrust}, which greatly expands the boundaries of research of distrust and largely broadens its applications in social media.
As the conceptual counterpart of trust, distrust could be as important as trust and its value has been widely recognized by social sciences in the physical world. However, little attention is paid on distrust in social media. Social media differs from the physical world - (1) its data is passively observed, large-scale, incomplete, noisy and embedded with rich heterogeneous sources; and (2) distrust is generally unavailable in social media. These unique properties of social media present novel challenges for computing distrust in social media: (1) passively observed social media data does not provide necessary information social scientists use to understand distrust, how can I understand distrust in social media? (2) distrust is usually invisible in social media, how can I make invisible distrust visible by leveraging unique properties of social media data? and (3) little is known about distrust and its role in social media applications, how can distrust help make difference in social media applications?
The chief objective of this dissertation is to figure out solutions to these challenges via innovative research and novel methods. In particular, computational tasks are designed to {\it understand distrust}, a innovative task, i.e., {\it predicting distrust} is proposed with novel frameworks to make invisible distrust visible, and principled approaches are develop to {\it apply distrust} in social media applications. Since distrust is a special type of negative links, I demonstrate the generalization of properties and algorithms of distrust to negative links, i.e., {\it generalizing findings of distrust}, which greatly expands the boundaries of research of distrust and largely broadens its applications in social media.
ContributorsTang, Jiliang (Author) / Liu, Huan (Thesis advisor) / Xue, Guoliang (Committee member) / Ye, Jieping (Committee member) / Aggarwal, Charu (Committee member) / Arizona State University (Publisher)
Created2015

Description
Social networking services have emerged as an important platform for large-scale information sharing and communication. With the growing popularity of social media, spamming has become rampant in the platforms. Complex network interactions and evolving content present great challenges for social spammer detection. Different from some existing well-studied platforms, distinct characteristics of newly emerged social media data present new challenges for social spammer detection. First, texts in social media are short and potentially linked with each other via user connections. Second, it is observed that abundant contextual information may play an important role in distinguishing social spammers and normal users. Third, not only the content information but also the social connections in social media evolve very fast. Fourth, it is easy to amass vast quantities of unlabeled data in social media, but would be costly to obtain labels, which are essential for many supervised algorithms. To tackle those challenges raise in social media data, I focused on developing effective and efficient machine learning algorithms for social spammer detection.
I provide a novel and systematic study of social spammer detection in the dissertation. By analyzing the properties of social network and content information, I propose a unified framework for social spammer detection by collectively using the two types of information in social media. Motivated by psychological findings in physical world, I investigate whether sentiment analysis can help spammer detection in online social media. In particular, I conduct an exploratory study to analyze the sentiment differences between spammers and normal users; and present a novel method to incorporate sentiment information into social spammer detection framework. Given the rapidly evolving nature, I propose a novel framework to efficiently reflect the effect of newly emerging social spammers. To tackle the problem of lack of labeling data in social media, I study how to incorporate network information into text content modeling, and design strategies to select the most representative and informative instances from social media for labeling. Motivated by publicly available label information from other media platforms, I propose to make use of knowledge learned from cross-media to help spammer detection on social media.
I provide a novel and systematic study of social spammer detection in the dissertation. By analyzing the properties of social network and content information, I propose a unified framework for social spammer detection by collectively using the two types of information in social media. Motivated by psychological findings in physical world, I investigate whether sentiment analysis can help spammer detection in online social media. In particular, I conduct an exploratory study to analyze the sentiment differences between spammers and normal users; and present a novel method to incorporate sentiment information into social spammer detection framework. Given the rapidly evolving nature, I propose a novel framework to efficiently reflect the effect of newly emerging social spammers. To tackle the problem of lack of labeling data in social media, I study how to incorporate network information into text content modeling, and design strategies to select the most representative and informative instances from social media for labeling. Motivated by publicly available label information from other media platforms, I propose to make use of knowledge learned from cross-media to help spammer detection on social media.
ContributorsHu, Xia, Ph.D (Author) / Liu, Huan (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Ye, Jieping (Committee member) / Faloutsos, Christos (Committee member) / Arizona State University (Publisher)
Created2015