Filtering by
- Member of: ASU Electronic Theses and Dissertations
- Member of: ASU Retirees Association (ASURA) Video History Project Interviews
- Member of: Learning Sciences Applied Projects
Bob Francis grew up in Yuma, Arizona and graduated from ASU. After spending a year teaching high school in Yuma, he returned to ASU in 1970, starting in the Alumni Association. After a few years, he moved to the Office of Undergraduate Admissions where he spent most of his career. He retired in 2002.
Important / interesting parts of the interview include:
• The beginning of the Office of Undergraduate Admissions in Part 2
• The changing attitude about the role of the University in marketing itself to students and parents in Part 3
• The role of the Devils’ Advocates played in selling the University in Part 4
• The role Don Dotts and Christine Kajikawa Wilkinson played in Bob’s career in Part 6


Current educational systems are trying to transform their practices with those that align with critical thinking skills, collaboration amongst students and allowing students to feel motivated and engaged in learning. Within a special education classroom at a Title I high school located in South Tempe, Arizona, a design was innovated in order to attempt to enhance this learning environment to foster students’ ability to build intrinsic motivation and engaged within their classroom through collaboration and the autonomy supported by the teacher and this innovation. Throughout this paper, you will be able to see the contextual analysis, theoretical inspirations, design constructs and analysis of the implementation within two separate class periods.


This study addresses the problem of particle image segmentation by measuring the similarity between a sampled region and an adjacent region, based on Bhattacharyya distance and an image feature extraction technique that uses distribution of local binary patterns and pattern contrasts. A boundary smoothing process is developed to improve the accuracy of the segmentation. The novel particle image segmentation algorithm is tested using four different cases of particle image velocimetry (PIV) images. The obtained experimental results of segmentations provide partitioning of the objects within 10 percent error rate. Ground-truth segmentation data, which are manually segmented image from each case, are used to calculate the error rate of the segmentations.

Here, this research extends that exploratory work in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased, by the addition of graphite or silver nanoparticles. Our results to date indicate that hfg can be substantially impacted, by up to ± 30% depending on the type of nanoparticle. Moreover, this dissertation reports further experiments with changing surface area based on volume fraction (0.005% to 2%) and various nanoparticle sizes to investigate the mechanisms for hfg modification in aqueous graphite and silver nanofluids. This research also investigates thermophysical properties, i.e., density and surface tension in aqueous nanofluids to support the experimental results of hfg based on the Clausius - Clapeyron equation. This theoretical investigation agrees well with the experimental results. Furthermore, this research investigates the hfg change of aqueous nanofluids with nanoscale studies in terms of melting of silver nanoparticles and hydrophobic interactions of graphite nanofluid. As a result, the entropy change due to those mechanisms could be a main cause of the changes of hfg in silver and graphite nanofluids.
Finally, applying the latent heat results of graphite and silver nanofluids to an actual solar thermal system to identify enhanced performance with a Rankine cycle is suggested to show that the tunable latent heat of vaporization in nanofluilds could be beneficial for real-world solar thermal applications with improved efficiency.



Two main strategies have emerged for integrating sustainability grand challenges. In the stand-alone course method, engineering programs establish one or two distinct courses that address sustainability grand challenges in depth. In the module method, engineering programs integrate sustainability grand challenges throughout existing courses. Neither method has been assessed in the literature.
This thesis aimed to develop sustainability modules, to create methods for evaluating the modules’ effectiveness on student cognitive and affective outcomes, to create methods for evaluating students’ cumulative sustainability knowledge, and to evaluate the stand-alone course method to integrate sustainability grand challenges into engineering curricula via active and experiential learning.
The Sustainable Metrics Module for teaching sustainability concepts and engaging and motivating diverse sets of students revealed that the activity portion of the module had the greatest impact on learning outcome retention.
The Game Design Module addressed methods for assessing student mastery of course content with student-developed games indicated that using board game design improved student performance and increased student satisfaction.
Evaluation of senior design capstone projects via novel comprehensive rubric to assess sustainability learned over students’ curriculum revealed that students’ performance is primarily driven by their instructor’s expectations. The rubric provided a universal tool for assessing students’ sustainability knowledge and could also be applied to sustainability-focused projects.
With this in mind, engineering educators should pursue modules that connect sustainability grand challenges to engineering concepts, because student performance improves and students report higher satisfaction. Instructors should utilize pedagogies that engage diverse students and impact concept retention, such as active and experiential learning. When evaluating the impact of sustainability in the curriculum, innovative assessment methods should be employed to understand student mastery and application of course concepts and the impacts that topics and experiences have on student satisfaction.

Results indicated that participants who received blended strategy training produced higher quality source-based essays than participants who received only reading comprehension, writing strategy training, or no training. Furthermore, participants who received only reading comprehension or writing strategy training did not produce higher quality source-based essays than participants in the no-training control group. Time on task was investigated as a potential explanation for the results. Neither total time on task nor practice time were predictive of group differences on source-based essay scores. Analyses further suggested that the impact of strategy training does not differ as a function of prior abilities; however, training does seem to impact the relation between prior abilities and source-based essay scores. Specifically, prior writing ability was unrelated to performance for those who received writing training (i.e., Writing Pal and blended conditions), and prior reading ability was unrelated to performance for those received the full dosage of iSTART training. Overall, the findings suggest that when taught in conjunction with one another, reading comprehension and writing strategy training transfers to source-based writing, providing a positive impact on score. Potential changes to the Writing Pal and iSTART to more closely align training with source-based writing are discussed as methods of further increasing the impact of training on source-based writing.