Filtering by
- Member of: Faculty and Staff
- Member of: ASU Library Collection

Research has shown that construction projects in Saudi Arabia have exhibited poor performance for the past three decades. The traditional risk management practices have been ineffective at helping contractors deliver projects on time and within budget while meeting quality expectations. Studies have identified that client decision making is one of the main causes of risks that occur on projects in Saudi Arabia. This paper proposes a new risk management model that can minimize client decision making, and enable the client to utilize expertise, thereby improving project quality and performance. The model is derived from the Information Measurement Theory (IMT) and Performance Information Procurement System (PIPS), both developed at Arizona State University in the United States (U.S.). The model has been tested over 1800 times in both construction and non-construction projects, showing a decrease in required management by owner by up to 80% and an increase in efficiency up to 40%.

The principles of a new project management model have been tested for the past 20 years. This project management model utilizes expertise instead of the traditional management, direction, and control (MDC). This new project management model is a leadership-based model instead of a management model. The practice of the new model requires a change in paradigm and project management structure. Some of the practices of this new paradigm include minimizing the flow of information and communications to and from the project manager [including meetings, emails and documents], eliminating technical communications, reducing client management, direction, and control of the vendor, and the hiring of vendors or personnel to do specific tasks. A vendors is hired only after they have clearly shown that they know what they are doing by showing past performance on similar projects, that they clearly understand how to create transparency to minimize risk that they do not control, and that they can clearly outline their project plan using a detailed milestone schedule including time, cost, and tasks all communicated in the language of metrics.

Zeolitic Imidazolate Frameworks (ZIFs) are one of the potential candidates as highly conducting networks with surface area with a possibility to be used as catalyst support. In the present study, highly active state-of-the-art Pt-NCNTFs catalyst was synthesized by pyrolyzing ZIF-67 along with Pt precursor under flowing Ar-H2 (90-10 %) gas at 700 °C. XRD analysis indicated the formation of Pt-Co alloy on the surface of the nanostructured catalyst support. The high resolution TEM examination showed the particle size range of 7 to 10 nm. Proton exchange membrane fuel cell performance was evaluated by fabricating membrane electrode assemblies using Nafion-212 electrolyte using H2/O2 gases (100 % RH) at various temperatures. The peak power density of 630 mW.cm2 was obtained with Pt-NCNTFs cathode catalyst and commercial Pt/C anode catalyst at 70 °C at ambient pressure.

As gesture interfaces become more main-stream, it is increasingly important to investigate the behavioral characteristics of these interactions – particularly in three-dimensional (3D) space. In this study, Fitts’ method was extended to such input technologies, and the applicability of Fitts’ law to gesture-based interactions was examined. The experiment included three gesture-based input devices that utilize different techniques to capture user movement, and compared them to conventional input technologies like touchscreen and mouse. Participants completed a target-acquisition test and were instructed to move a cursor from a home location to a spherical target as quickly and accurately as possible. Three distances and three target sizes were tested six times in a randomized order for all input devices. A total of 81 participants completed all tasks. Movement time, error rate, and throughput were calculated for each input technology. Results showed that the mean movement time was highly correlated with the target's index of difficulty for all devices, providing evidence that Fitts’ law can be extended and applied to gesture-based devices. Throughputs were found to be significantly lower for the gesture-based devices compared to mouse and touchscreen, and as the index of difficulty increased, the movement time increased significantly more for these gesture technologies. Error counts were statistically higher for all gesture-based input technologies compared to mouse. In addition, error counts for all inputs were highly correlated with target width, but little impact was shown by movement distance. Overall, the findings suggest that gesture-based devices can be characterized by Fitts’ law in a similar fashion to conventional 1D or 2D devices.

Load associated fatigue cracking is one of the major distress types occurring in flexible pavements. Flexural bending beam fatigue laboratory test has been used for several decades and is considered an integral part of the Superpave advanced characterization procedure. One of the most significant solutions to sustain the fatigue life for an asphaltic mixture is to add sustainable materials such as rubber or polymers to the asphalt mixture. A laboratory testing program was performed on three gap-graded mixtures: unmodified, Asphalt Rubber (AR) and polymer-modified. Strain controlled fatigue tests were conducted according to the AASHTO T321 procedure. The results from the beam fatigue tests indicated that the AR and polymer-modified gap graded mixtures would have much longer fatigue lives compared to the reference (unmodified) mixture. In addition, a mechanistic analysis using 3D-Move software coupled with a cost-effectiveness analysis study based on the fatigue performance on the three mixtures were performed. Overall, the analysis showed that the AR and polymer-modified asphalt mixtures exhibited significantly higher cost-effectiveness compared to unmodified HMA mixture. Although AR and polymer-modification increases the cost of the material, the analysis showed that they are more cost effective than the unmodified mixture.

A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimation. The proposed method is applied to model commute mode choice among four alternatives (auto, transit, bicycle and walk) using travel behavior data from Argau, Switzerland. Comparisons between the multinomial logit model and the proposed semi-nonparametric model show that violations of the standard Gumbel distribution assumption lead to considerable inconsistency in parameter estimates and model inferences.

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern building energy system can be viewed as a complex dynamical system that is interconnected and influenced by external and internal factors. Modern large scale sensor measures some physical signals to monitor real-time system behaviors. Such data has the potentials to detect anomalies, identify consumption patterns, and analyze peak loads. The paper proposes a novel method to detect hidden anomalies in commercial building energy consumption system. The framework is based on Hilbert-Huang transform and instantaneous frequency analysis. The objectives are to develop an automated data pre-processing system that can detect anomalies and provide solutions with real-time consumption database using Ensemble Empirical Mode Decomposition (EEMD) method. The finding of this paper will also include the comparisons of Empirical mode decomposition and Ensemble empirical mode decomposition of three important type of institutional buildings.

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results. Consequently, excess energy has to be generated to prevent blackout; causes for energy surge are not easily determined; and potential energy use reduction from energy efficiency solutions is usually not translated into actual energy use reduction. The paper highlights the weaknesses of traditional techniques, and lays out a framework to improve the prediction of energy demand by combining energy use models of equipment, physical systems and buildings, with the proposed data mining algorithms for reverse engineering. The research team first analyses data samples from large complex energy data, and then, presents a set of computationally efficient data mining algorithms for reverse engineering. In order to develop a structural system model for reverse engineering, two focus groups are developed that has direct relation with cause and effect variables. The research findings of this paper includes testing out different sets of reverse engineering algorithms, understand their output patterns and modify algorithms to elevate accuracy of the outputs.

Brazil has had issues in efficiently providing the required amount of electricity to its citizens at a low cost. One of the main causes to the decreasing performance of energy is due to reoccurring droughts that decrease the power generated by hydroelectric facilities. To compensate for the decrease, Brazil brought into use thermal power plants. The power plants being on average 23.7% more expensive than hydroelectric. Wind energy is potentially an alternative source of energy to compensate for the energy decrease during droughts. Brazil has invested in wind farms recently, but, due to issues with the delivery method, only 34% of wind farms are operational. This paper reviews the potential benefit Brazil could receive from investing more resources into developing and operating wind farms. It also proposes that utilization of the best value approach in delivering wind farms could produce operational wind farms quicker and more efficiently than previously experienced.

The Federal Depository Library Program (FDLP) is a longstanding, geographically distributed partnership between a network of libraries and the U.S. Government Publishing Office (GPO). The goal of the FDLP is to provide permanent no-fee public access to federal government information. Academic and research libraries make up the bulk of participants in the program and are essential to achieving this objective.
The combined force of the rapidly changing landscape for academic library collections and services, and the transition of government information resources to be almost entirely web-based, has led to the need and opportunity for the FDLP to adapt. Advocating for modernization and change from within the program is a community effort, and a variety of strategies can – and have – achieved meaningful change. Countering the traditional narrative that change to federal agency programs requires Congressional intervention, we see in practice that the FDLP is responsive to community engagement and relies on knowledgeable professionals serving as advocates both in formally appointed roles and as community leaders acting within professional associations and as part of independent organizations.
This chapter will highlight ways in which the FDLP has changed in response to community advocacy, discussing methods that individual advocates and organizations of varying sizes can use to have influence on the direction of the program. We will describe the changing trajectory of the Depository Library Council, the committee that formally advises the GPO Director and the Superintendent of Documents, which has shifted over the last two decades to encompass policy issues as well as operational practices. We will also present a recent successful, non-legislative advocacy route that has brought about significant reprioritization and change to the future direction of the program – the GPO Director’s Task Force to Study the Feasibility of a Digital FDLP, which in just under a year researched and wrote a report recommending considerations and methods for transitioning to a digital program.
Active participation in the modern FDLP is a crucial means by which academic and research libraries can serve the current and future needs of researchers, teachers, and learners. The sustainability and effectiveness of this program is therefore a public policy issue that affects the interests of academic libraries; fortunately, there are many avenues to advocacy that can make a lasting impact on the FDLP as a public good. Engaging in advocacy within the FDLP can also align with professional service requirements or expectations for academic appointees, and providing professional expertise to agency representatives steers well clear of most prohibitions on political activity at publicly-funded institutions. By advocating for changes that improve the value proposition and long-term stability of the FDLP, academic and research library workers can support the shared common goods of achievable participation that leads to a stronger FDLP and more access to federal government information for all.