Filtering by
- Member of: Center for Earth Systems Engineering and Management
- Status: Published

The Food-Energy-Water (FEW) nexus is the interaction and the interdependence of the food, energy and water systems. These interdependencies exist in all parts of the world yet little knowledge exists of the complexity within these interdependent systems. Using Arizona as a case study, systems-oriented frameworks are examined for their value in revealing the complexity of FEW nexus. Industrial Symbiosis, Life Cycle Assessment (LCA) and Urban Metabolism are examined. The Industrial Symbiosis presents the system as purely a technical one and looks only at technology and hard infrastructure.
The LCA framework takes a reductionist approach and tries to make the system manageable by setting boundary conditions. This allows the frameworks to analyze the soft infrastructure as well as the hard infrastructure. The LCA framework also helps determine potential impact. Urban Metabolism analyzes the interactions between the different infrastructures within the confines of the region and retains the complexity of the system. It is concluded that a combination of the frameworks may provide the most insight in revealing the complexity of nexus and guiding decision makers towards improving sustainability and resilience.
Public transit necessitates environmental exposure and there is increasing recognition that in a future with hotter temperatures new strategies are needed to protect passengers. Arizona State University’s Spring 2017 Urban Infrastructure Anatomy course assessed travel behavior, public transit stop design, and heat exposure to develop recommendations for mitigating heat exposure. Travel surveys, analysis of infrastructure characteristics, and thermal imaging were used to assess exposure. A suite of mitigation strategies was developed from a literature review, conversations with experts, and review of other transit systems. Focusing on neighborhoods in Tempe, Arizona, strategies are developed for protecting future riders from negative health outcomes.
Global climate models predict increases in precipitation events in the Phoenix-metropolitan area and with the proposition of more flooding new insights are needed for protecting roadways and the services they provide. Students from engineering, sustainability, and planning worked together in ASU’s Urban Infrastructure Anatomy Spring 2016 course to assess:
1. How historical floods changed roadway designs.
2. Precipitation forecasts to mid-century.
3. The vulnerability of roadways to more frequent precipitation.
4. Adaptation strategies focusing on safe-to-fail thinking.
5. Strategies for overcoming institutional barriers to enable transitions.
The students designed an EPA Storm Water Management Model for the City of Phoenix and forced it with future precipitation forecasts. Vulnerability indexes were created for infrastructure performance and social outcomes. A multi-criteria decision analysis framework was created to prioritize infrastructure adaptation strategies.

In the economic crisis Detroit has been enduring for many decades, a unique crisis has emerged with the provision of water that is normally not seen in the developed world. The oversized, deteriorating, and underfunded water provision system has been steadily accruing debt for the water utility since population began to decrease in the 1950s. As a result, the utility has instated rate increases and aggressive water shut off policies for non-paying residents. Residents have consequentially claimed that their human right to water has been breeched.
In this report, I analyze possible solutions to the water crisis from both the water utility and resident perspectives. Since all utility management solutions have very serious limitations on either side of the argument, I have chosen a set of technologies to consider as a part of an impact mitigation plan that can provide alternative sources of water for the people who no longer can rely on municipal water. I additionally propose an adaptive management plan to evaluate the effects of using these technologies in the long-term. The monitoring of the effects of technological mitigations might also help determine if sustainability (efficiency and equity) could be an attainable long-term solution to Detroit’s water crisis.

Decling Car Use in a Megacity: Exploring the Drivers of Peak Car Including Infrastructure Saturation
There is increasing evidence that vehicle travel in developed countries may have peaked, contradicting many historical travel demand forecasts. The underlying causes of this peaking are still under debate and there has been a mobilization of research, largely focused at national scales, to study the explanatory drivers. There is, however, a dearth of research focused at the metropolitan scale where transportation policy and planning are frequently decided.
Using Los Angeles County, California, as a case study, we investigate the Peak Car theory and whether social, economic, and technical factors, including roadways that have become saturated at times, may be contributing to changes in travel behavior. After peaking in 2002, vehicle travel in Los Angeles County declined by 3.4 billion (or 4.1%) by 2010. The effects of changing fuel prices, fuel economy, population growth, increased utilization of alternate transportation modes, changes in driver demographics, income, and freight are first assessed. It is possible, and likely, that these factors alone explain the reduction in travel. However, the growth in congestion raises questions of how a constricting supply of roadway network capacity may contribute to travel behavior changes.
There have been no studies that have directly assessed how the maturing supply of infrastructure coupled with increasing demand affect travel behavior. We explore regional and urban factors in Los Angeles to provide insight into the drivers of Peak Car at city scales where the majority of travel occurs. The results show that a majority of the decline in VMT in Los Angeles can be attributed the rising fuel prices during the 2000s. While overall roadway network capacity is not yet a limiting factor for vehicle travel there is some evidence that suggests that congestion along certain corridors may be shifting some automobile travel to alternatives. The results also suggest that the relative impact of any factor on travel demand is likely to vary from one locale to another and Peak Car analysis across large geographic areas obscures the nuisances of travel behavior at a local scale.

In the spring of 2016, the City of Apache Junction partnered with the School of Geographical Sciences and Urban Planning at Arizona State University on three forward-thinking plans for development in Apache Junction. Graduate students in the Urban and Environmental Planning program worked alongside City staff, elected officials and the public to identify opportunities and visions for:
1. Multi-modal access and connectivity improvements for City streets and open space.
2. Downtown development.
3. A master-planned community on state land south of the U.S. 60.
The following sections of the report present Apache Junction’s unique characteristics, current resident demographics, development needs and implementation strategies for each project:
1. Community Profile
2. Trail Connectivity Master Plan
3. Downtown Visioning
4. State Land Visioning
The Trail Connectivity Master Plan optimizes existing trails and wide road shoulders to improve multi-modal connections across the city. The proposed connections emphasize access to important recreation, education and other community facilities for pedestrians, equestrians and bicycles. Trail and lane designs recommend vegetated buffers, wherever possible, to improve traveler safety and comfort. The proposals also increase residents’ interaction with open space along urban-rural trails and park linkages to preserve opportunities to engage with nature. The objectives of the report are accomplished through three goals: connectivity, safety improvements and open space preservation.
Downtown Visioning builds on a large body of conceptual design work for Apache Junction’s downtown area along Idaho Road and Apache Trail. This report identifies three goals: to establish a town center, to reestablish the grid systems while maintaining a view of the Superstition Mountains, and to create an identity and sense of place for the downtown.
State Land Visioning addresses a tract of land, approximately 25 square miles in area, south of the U.S. 60. The main objective is to facilitate growth and proper development in accordance with existing goals in Apache Junction’s General Plan. This is accomplished through three goals:
1. Develop a foundation for the creation of an economic corridor along US-60 through
preliminary market research and land use planning.
2. Create multi-modal connections between existing development north of US-60 and
future recreational space northeast of US-60.
3. Maintain a large ratio of open space to developed area that encompasses existing
washes and floodplains using a master planned community framework to provide an
example for future land use planning.

This paper applies LCA methodology using local variables to assess the environmental impacts of the food grade glass containers that are disposed of on Arizona State University’s Tempe campus throughout their two distinct end-of-life scenarios: glass to be recycled or glass to be sent to the landfill as refuse.

Hemcrete is an alternative, environmentally‐friendly building material gaining adherents in Great Britain and other European countries. It is an attractive choice as a building material because it is made from a renewable resource, hemp, a hardy plant that is a close, but non‐hallucinogenic relative of marijuana. This plant is relatively easy to cultivate, requires little in the way of pesticides or fertilizers, and almost all parts can be used for various products from paper to textiles to food.
Hemcrete is made from a mixture of lime, water, and the fibrous outer portion of the hemp plant called the “hurd” or “shive”. When mixed, it is worked and placed much like conventional concrete ‐ hence the name. However, that is where the similarities with concrete end. Hemcrete is not comparable to concrete on a strength basis, and is better described as an alternative insulation product. When built into walls of sufficient thickness, Hemcrete offers high thermal efficiency, and has strong claims to being carbon negative. The purpose of this study
was to evaluate this claim of carbon negativity, and to compare these environmentally friendly qualities against conventional fiberglass batt insulation.
Our model was constructed using two identically sized “walls” measuring eight feet square by one foot in depth, one insulated using Hemcrete, and the other using fiberglass. Our study focused on three areas: water usage, cost, and carbon dioxide emissions. We chose water
usage because we wanted to determine the feasibility of using Hemcrete in the Phoenix metropolitan region where water is a troubled resource. Secondly, we wished to evaluate the claim on carbon negativity, so CO2 equivalents throughout the production process were measured. Finally, we wished to know whether Hemcrete could compete on a cost basis with more conventional insulation methods, so we also built in a price comparison.
Since the cultivation of hemp is currently unlawful in the United States, this study can help determine whether these restrictions should be relaxed in order to allow the construction of buildings insulated with Hemcrete.

The current study conducts a comparative LCA of two alternative structural retrofit/ strengthening techniques - steel jacketing, and the carbon fiber reinforced polymer (CFRP) retrofit. A cradle-to-gate system boundary is used for both techniques. The results indicated that the CFRP retrofit technique has merits over the conventional steel jacketing in all three impact categories covered by this study. This is primarily attribute to the much less material consumption for CFRP retrofit as compared to steel jacketing for achieving the same load carrying capability of the retrofitted bridge structures. Even though the transoceanic transportation of carbon fiber has been taken into account in this study, the energy consumption and environmental impacts of CFRP transportation is still much smaller than steel due to it light weight property. The impacts of CFRP retrofit are mainly focused in the material manufacturing phase, which implies that the improvements in the carbon fiber manufacturing technology could potentially further reduce the environmental impacts of CFRP retrofit.

Urban landscaping palm tree waste in the form of palm frond trimmings and bark shavings that is currently handled as municipal solid waste by the City of Phoenix and other major municipalities can be handled in more cost effective ways and lead to reductions in emissions and greenhouse gases. While many cities have green organics collection and diversion programs, they always exclude palm tree waste due to its unique properties. As a result, an unknown tonnage of palm tree waste is annually landfilled as municipal solid waste. Additionally, as the tonnage is unknown, so are the associated emissions, greenhouse gases, and costs. An attributional lifecycle assessment was conducted in the City of Phoenix from the perspective responsibility of the City of Phoenix’s Public Works Department.