Filtering by
- Member of: Embryo Project Encyclopedia Articles
- Member of: Metis Center for Infrastructure and Sustainable Engineering

Harry Hamilton Laughlin helped lead the eugenics
movement in the United States during the early twentieth century.
The US eugenics movement of the early twentieth century sought to
reform the genetic composition of the United States population through
sterilization and other restrictive reproductive measures. Laughlin
worked as superintendent and assistant director of the Eugenics
Research Office (ERO) at Cold Spring Harbor Laboratory in Cold
Spring Harbor, New York, alongside director Charles Davenport.
During Laughlin's career at the ERO, Laughlin studied human familial
ancestry, called pedigrees, and in 1922 published the book Eugenical
Sterilization in the United States, which influenced
sterilization laws in multiple states. Laughlin's support of
compulsory sterilization to control the reproductive capacity of
entire populations influenced the history of eugenics and
reproductive medicine.

In 2007, the Human Fertilisation and Embryology Authority in London, UK, published Hybrids and Chimeras: A Report on the Findings of the Consultation, which summarized a public debate about research on, and suggested policy for, human animal chimeras. The HFEA formulated the report after conducting a series of surveys and debates from earlier in 2007. The HFEA issued a statement in September 2007, followed by an official report published on 1 October 2007. Their report on human-animal chimeras set a worldwide precedent for discussions of the ethical use of those embryos in labs. The HFEA's report led the UK government to pass legislature about the use of human-animal cytoplasmic hybrid embryos for research in the UK.

In the case Whitner v. South Carolina in 1997, the South Carolina State Supreme Court defined the concept of a child to include viable fetuses. This allowed grounds for prosecution of a pregnant womanÕs prenatal activity if those activities endangered or could potentially endanger the fetus within her. The case brought the issue of fetal rights versus pregnant womenÕs rights to light. The case also explored whether or not the conviction of a pregnant woman was in the best interest of a fetus, because fear of prosecution could lead the woman to not seek prenatal care or to seek an abortion outside of licensed clinics.

Paul Kammerer conducted experiments on amphibians and marine animals at the Vivarium, a research institute in Vienna, Austria, in the early twentieth century. Kammerer bred organisms in captivity, and he induced them to develop particular adaptations, which Kammerer claimed the organismss offspring would inherit. Kammerer argued that his results demonstrated the inheritance of acquired characteristics, or Lamarckian inheritance. The Lamarckian theory of inheritance posits that individuals transmit acquired traits to their offspring. Kammerer worked during a period in which scientists debated how variation between organisms and within species was caused, and how organisms could inherit that variation from their parents. Kammerer contended that the inheritance of acquired characteristics occurs during embryological development, but several scientists argued that he provided poor evidence for his claims.

Mitochondrial DNA (mtDNA) is located outside the nucleus in the liquid portion of the cell (cytoplasm) inside cellular organelles called Mitochondria. Mitochondria are located in all complex or eukaryotic cells, including plant, animal, fungi, and single celled protists, which contain their own mtDNA genome. In animals with a backbone, or vertebrates, mtDNA is a double stranded, circular molecule that forms a circular genome, which ranges in size from sixteen to eighteen kilo-base pairs, depending on species. Each mitochondrion in a cell can have multiple copies of the mtDNA genome. In humans, the mature egg cell, or oocyte, contains the highest number of mitochondria among human cells, ranging from 100,000 to 600,000 mitochondria per cell, but each mitochondrion contains only one copy of mtDNA. In human embryonic development, the number of mitochondria, the content of mtDNA in each mitochondrion, and the subsequent mtDNA activity affects the production of the oocytes, fertilization of the oocytes, and early embryonic growth and development.

The Human Fertilisation and Embryology Act 1990 established the legal framework that governs infertility treatment, medical services ancillary to infertility treatment such as embryo storage, and all human embryological research performed in the UK. The law also defines a legal concept of the parent of a child conceived with assisted reproductive technologies. Section Five of the Act establishes the Human Fertilisation and Embryology Authority, the first of its kind in the world, to enforce and regulate the responsibilities that scientists, doctors, and prospective parents have towards embryos and to each other. Upon introducing the act to the House of Commons, the Secretary of State for Health of the time, Kenneth Clarke, said the bill was in his opinion the most important piece of legislation considered by the government in two decades.

Andrew Francis Dixon studied human anatomy and egg cells at the turn of the twentieth century in Ireland and Great Britain. Dixon studied the sensory and motor nervous system of the face, the cancellous bone tissue of the femur, supernumerary kidneys, and the urogenital system. In 1927 Dixon described a mature human ovarian follicle. This follicle, Dixon noted, contained an immature human egg cell (oocyte) with a visible first polar body and the beginnings of the second polar body. Dixon's work helped researchers describe many of the items found in follicles during the production of oocytes, and it helped them identify when, where, and how those items were produced. Based upon his descriptions, later researchers further described polar bodies and investigated their functions.

Ethical Issues in Human Stem Cell Research: Executive Summary was published in September 1999 by The US National Bioethics Advisory Commission in response to a national debate about whether or not the US federal government should fund embryonic stem cell research. Ethical Issues in Human Stem Cell Research recommended policy to US President William Clinton's administration, which advocated for federal spending on the use of stem research on stem cells that came from embryos left over from in vitro fertilization (IVF) fertility treatments. Although NBAC's proposals never became legislation, the report helped shape public, private, and international discourse on stem cell research policy.

Thalidomide, a drug capable of causing fetal abnormalities (teratogen), has caused greater than ten thousand birth defects worldwide since its introduction to the market as a pharmaceutical agent. Prior to discovering thalidomide's teratogenic effects in the early 1960s, the US Food and Drug Administration (FDA) did not place regulations on drug approval or monitoring as it later did. By 1962, approximately 20,000 patients in the US had taken thalidomide as part of an unregulated clinical trial before any actions were taken to stop thalidomide's distribution. Due to thalidomide's effects on fetuses, both nationally and abroad, the US Congress passed the 1962 Kefauver-Harris Amendments to the 1938 Food, Drug, and Cosmetic Act. These amendments imposed guidelines for the process of drug approval in the US and required that a drug be safe as well as effective before it could be approved and marketed. Thalidomide also influenced the FDA's creation of pregnancy categories; a ranking of drugs based on their effects on reproduction and pregnancy. Thalidomide motivated the laws on regulating and monitoring drugs developed in the US and by the FDA in the twentieth and twenty-first centuries.

At the turn of the twentieth century, Edmund B. Wilson
performed experiments to show where germinal
matter was located in molluscs. At Columbia University in New York City,
New York, Wilson studied what causes cells to differentiate during
development. In 1904 he conducted his experiments on molluscs, and he modified the
theory about the location of germinal matter in the succeeding years. Wilson and others modified the
theory of germinal localization to accommodate results that showed
the significance of chromosomes in development and heredity.