Matching Items (81)
Filtering by

Clear all filters

141396-Thumbnail Image.png
Description

In an extreme heat event, people can go to air-conditioned public facilities if residential air-conditioning is not available. Residences that heat slowly may also mitigate health effects, particularly in neighborhoods with social vulnerability. We explored the contributions of social vulnerability and these infrastructures to heat mortality in Maricopa County and

In an extreme heat event, people can go to air-conditioned public facilities if residential air-conditioning is not available. Residences that heat slowly may also mitigate health effects, particularly in neighborhoods with social vulnerability. We explored the contributions of social vulnerability and these infrastructures to heat mortality in Maricopa County and whether these relationships are sensitive to temperature. Using Poisson regression modeling with heat-related mortality as the outcome, we assessed the interaction of increasing temperature with social vulnerability, access to publicly available air conditioned space, home air conditioning and the thermal properties of residences. As temperatures increase, mortality from heat-related illness increases less in census tracts with more publicly accessible cooled spaces. Mortality from all internal causes of death did not have this association. Building thermal protection was not associated with mortality. Social vulnerability was still associated with mortality after adjusting for the infrastructure variables. To reduce heat-related mortality, the use of public cooled spaces might be expanded to target the most vulnerable.

ContributorsEisenman, David P. (Author) / Wilhalme, Holly (Author) / Tseng, Chi-Hong (Author) / Chester, Mikhail Vin (Author) / English, Paul (Author) / Pincetl, Stephanie Sabine, 1952- (Author) / Fraser, Andrew (Author) / Vangala, Sitaram (Author) / Dhaliwal, Satvinder K. (Author)
Created2016-08-03
141397-Thumbnail Image.png
Description

We conducted microclimate simulations in ENVI-Met 3.1 to evaluate the impact of vegetation in lowering temperatures during an extreme heat event in an urban core neighborhood park in Phoenix, Arizona. We predicted air and surface temperatures under two different vegetation regimes: existing conditions representative of Phoenix urban core neighborhoods, and

We conducted microclimate simulations in ENVI-Met 3.1 to evaluate the impact of vegetation in lowering temperatures during an extreme heat event in an urban core neighborhood park in Phoenix, Arizona. We predicted air and surface temperatures under two different vegetation regimes: existing conditions representative of Phoenix urban core neighborhoods, and a proposed scenario informed by principles of landscape design and architecture and Urban Heat Island mitigation strategies. We found significant potential air and surface temperature reductions between representative and proposed vegetation scenarios:

1. A Park Cool Island effect that extended to non-vegetated surfaces.
2. A net cooling of air underneath or around canopied vegetation ranging from 0.9 °C to 1.9 °C during the warmest time of the day.
3. Potential reductions in surface temperatures from 0.8 °C to 8.4 °C in areas underneath or around vegetation.

ContributorsDeclet-Barreto, Juan (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Chow, Winston, 1951- (Author) / Harlan, Sharon L. (Author)
Created2012-12-21
141398-Thumbnail Image.png
Description

The spatial configuration of cities can affect how urban environments alter local energy balances. Previous studies have reached the paradoxical conclusions that both sprawling and high-density urban development can amplify urban heat island intensities, which has prevented consensus on how best to mitigate the urban heat island effect via urban

The spatial configuration of cities can affect how urban environments alter local energy balances. Previous studies have reached the paradoxical conclusions that both sprawling and high-density urban development can amplify urban heat island intensities, which has prevented consensus on how best to mitigate the urban heat island effect via urban planning. To investigate this apparent dichotomy, we estimated the urban heat island intensities of the 50 most populous cities in the United States using gridded minimum temperature data sets and quantified each city's urban morphology with spatial metrics. The results indicated that the spatial contiguity of urban development, regardless of its density or degree of sprawl,was a critical factor that influenced the magnitude of the urban heat island effect. A ten percentage point increase in urban spatial contiguity was predicted to enhance the minimum temperature annual average urban heat island intensity by between 0.3 and 0.4 °C. Therefore, city contiguity should be considered when devising strategies for urban heat island mitigation, with more discontiguous development likely to ameliorate the urban heat island effect. Unraveling how urban morphology influences urban heat island intensity is paramount given the human health consequences associated with the continued growth of urban populations in the future.

ContributorsDebbage, Neil (Author) / Shepherd, J. Marshall (Author)
Created2015-09-12
141399-Thumbnail Image.png
Description

Urban ecosystems are subjected to high temperatures—extreme heat events, chronically hot weather, or both—through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better

Urban ecosystems are subjected to high temperatures—extreme heat events, chronically hot weather, or both—through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970–2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade‐offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25°C surface cooling compared to bare soil on low‐humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits.

To estimate the water loss associated with land‐surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation–income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the benefits, costs, spatial structure, and temporal trajectory for the use of ecosystem services to moderate climate extremes. Increasing vegetation is one strategy for moderating regional climate changes in urban areas and simultaneously providing multiple ecosystem services. However, vegetation has economic, water, and social equity implications that vary dramatically across neighborhoods and need to be managed through informed environmental policies.

ContributorsJenerette, G. Darrel (Author) / Harlan, Sharon L. (Author) / Stefanov, William L. (Author) / Martin, Chris A. (Author)
Created2011-10-01
141400-Thumbnail Image.png
Description

Outdoor human comfort is determined for the remodelled downtown of Tempe, Arizona, USA, an acclaimed example of New Urbanist infill. The authors desired to know whether changes were accompanied by more comfortable conditions, especially in hot, dry summer months. The physiological equivalent temperature provided an assessment of year-round outdoor human

Outdoor human comfort is determined for the remodelled downtown of Tempe, Arizona, USA, an acclaimed example of New Urbanist infill. The authors desired to know whether changes were accompanied by more comfortable conditions, especially in hot, dry summer months. The physiological equivalent temperature provided an assessment of year-round outdoor human comfort. Building compactness and tree shade that became part of the changes in the downtown provided more overall daytime human comfort than open nearby streets; however some downtown sites were less comfortable at night, but below 40°C, a threshold for human comfort in this desert environment.

ContributorsCrewe, Katherine (Author) / Brazel, Anthony J. (Author) / Middel, Ariane (Author)
Created2016-06-01
141401-Thumbnail Image.png
Description

We examined the horizontal and vertical nocturnal cooling influence of a small park with irrigated lawn and xeric surfaces (∼3 ha) within a university campus of a hot arid city. Temperature data from 0.01- to 3-m heights observed during a bicycle traverse of the campus were combined with modeled spatial

We examined the horizontal and vertical nocturnal cooling influence of a small park with irrigated lawn and xeric surfaces (∼3 ha) within a university campus of a hot arid city. Temperature data from 0.01- to 3-m heights observed during a bicycle traverse of the campus were combined with modeled spatial temperature data simulated from a three-dimensional microclimate model (ENVI-met 3.1). A distinct park cool island, with mean observed magnitudes of 0.7–3.6°C, was documented for both traverse and model data with larger cooling intensities measured closer to surface level. Modeled results possessed varying but generally reasonable accuracy in simulating both spatial and temporal temperature data, although some systematic errors exist. A combination of several factors, such as variations in surface thermal properties, urban geometry, building orientation, and soil moisture, was likely responsible for influencing differential urban and non-urban near-surface temperatures. A strong inversion layer up to 1 m over non-urban surfaces was detected, contrasting with near-neutral lapse rates over urban surfaces. A key factor in the spatial expansion of the park cool island was the advection of cooler park air to adjacent urban surfaces, although this effect was mostly concentrated from 0- to 1-m heights over urban surfaces that were more exposed to the atmosphere.

ContributorsChow, Winston, 1951- (Author) / Pope, Ronald L. (Author) / Martin, Chris A. (Author) / Brazel, Anthony J. (Author)
Created2010-05-21
141402-Thumbnail Image.png
Description

The forthcoming century will see cities exposed to temperature rises from urbanisation as well as greenhouse gas induced radiative forcing. Increasing levels of urban heat will have a direct impact upon the people living in cities in terms of health, but will also have an indirect effect by impacting upon

The forthcoming century will see cities exposed to temperature rises from urbanisation as well as greenhouse gas induced radiative forcing. Increasing levels of urban heat will have a direct impact upon the people living in cities in terms of health, but will also have an indirect effect by impacting upon the critical infrastructure networks of the city itself (e.g., ICT, transport and energy). Some infrastructures are more resistant than others, but there is a growing reliance on the energy network to provide the power for all of our future critical infrastructure networks. Unfortunately, the energy network is far from resilient from the effects of urban heat and is set to face a perfect storm of increasing temperatures and loadings as demand increases for air conditioning, refrigeration, an electrified transport network and a high-speed ICT network. The result is that any failure on the energy network could quickly cascade across much of our critical infrastructure. System vulnerabilities will become increasingly apparent as the impacts of climate change begin to manifest and this paper calls for interdisciplinary action outlining the need for high resolution monitoring and modelling of the impact of urban heat on infrastructure.

ContributorsChapman, Lee (Author) / Antunes Azevedo, Juliana (Author) / Tatiana, Prieto-Lopez (Author)
Created2013-04-01
141403-Thumbnail Image.png
Description

Cities are systems that include natural and human-created components. When a city grows without proper planning, it tends to have low environmental quality. If improving environmental quality is intended, people’s opinion should be taken into account for a better acceptance of urban management decisions. In this study, we assessed people’s

Cities are systems that include natural and human-created components. When a city grows without proper planning, it tends to have low environmental quality. If improving environmental quality is intended, people’s opinion should be taken into account for a better acceptance of urban management decisions. In this study, we assessed people’s perception of trees by conducting a survey with a controlled sample of citizens from the city of Morelia (west-central Mexico). Citizens liked both native and exotic tree species and rejected mainly exotic ones. Preference for trees were related to tree attributes; such as size. Trees that dropped leaves or tended to fall were not liked. The most-mentioned tree-related benefits were oxygen supply and shade; the most mentioned tree-related damages were accidents and infrastructure damage. The majority of respondents preferred trees near houses to increase tree density. Also, most respondents preferred trees in green areas as well as close to their houses, as they consider that trees provide oxygen. The majority of the respondents thought more trees were needed in the city. In general, our results show that although people perceive that trees in urban areas can cause damages, they often show more interest for the benefits related to trees and consider there should be more trees in cities. We strongly suggest the development of studies that broaden our knowledge of citizen preferences in relation to urban vegetation, and that further policy making takes their perception into account when considering creating new urban green areas, regardless of their type or size.

ContributorsCamacho-Cervantes, Morelia (Author) / Schondube, Jorge E. (Author) / Castillo, Alicia (Author) / MacGregor-Fors, Ian (Author)
Created2014-01-23
141404-Thumbnail Image.png
Description

Field observations were carried out to determine the influence of a park on the urban summer climate in the nearby areas. The possibilities of reduction in air conditioning energy were investigated. Air temperature, relative humidity and other meteorological factors were measured at many locations inside a park and in the

Field observations were carried out to determine the influence of a park on the urban summer climate in the nearby areas. The possibilities of reduction in air conditioning energy were investigated. Air temperature, relative humidity and other meteorological factors were measured at many locations inside a park and in the surrounding areas in the Tama New Town, a city in the west of the Tokyo Metropolitan Area, Japan. The observations indicated that vegetation could significantly alter the climate in the town. At noon, the highest temperature of the ground surface of the grass field in the park was 40.3 °C, which was 19 °C lower than that of the asphalt surface or 15 °C lower than that of the concrete surface in the parking or commercial areas. At the same time, air temperature measured at 1.2 m above the ground at the grass field inside the park was more than 2 °C lower than that measured at the same height in the surrounding commercial and parking areas. Soon after sunset, the temperature of the ground surface at the grass field in the park became lower than that of the air, and the park became a cool island whereas paved asphalt or concrete surfaces in the town remained hotter than the overlying air even late at night. With a size of about 0.6 km2, at noon, the park can reduce by up to 1.5 °C the air temperature in a busy commercial area 1 km downwind. This can lead to a significant decrease of in air conditioning energy in the commercial area.

ContributorsThanh Ca, Vu (Author) / Asaeda, Takashi (Author) / Abu, Eusuf Mohamad (Author)
Created1998-05-27
141405-Thumbnail Image.png
Description

Two Long-Term Ecological Research (LTER) sites now include urban areas (Baltimore, Maryland and Phoenix, Arizona). A goal of LTER in these cities is to blend physical and social science investigations to better understand urban ecological change. Research monitoring programs are underway to investigate the effects of urbanization on ecosystems. Climate

Two Long-Term Ecological Research (LTER) sites now include urban areas (Baltimore, Maryland and Phoenix, Arizona). A goal of LTER in these cities is to blend physical and social science investigations to better understand urban ecological change. Research monitoring programs are underway to investigate the effects of urbanization on ecosystems. Climate changes in these urban areas reflect the expanding population and associated land surface modifications. Long-term urban climate effects are detectable from an analysis of the GHCN (Global Historical Climate Network) database and a comparison of urban versus rural temperature changes with decadal population data. The relation of the urban versus rural minimum temperatures (Tminu-r) to population changes is pronounced and non-linear over time for both cities. The Tmaxu-r data show no well-defined temporal trends.

ContributorsBrazel, Anthony J. (Author) / Heisler, Gordon (Author) / Selover, Nancy (Author) / Vose, Russell (Author)
Created2000-07-20