Matching Items (324)
Description

This creative project outlines the steps taken to successfully plan and host a fundraising event at Arizona State University. In my case, this more specifically dealt with organizing a dodgeball tournament between two friendly rivals: police officers and firefighters in the city of Phoenix. All proceeds raised from this fundraising

This creative project outlines the steps taken to successfully plan and host a fundraising event at Arizona State University. In my case, this more specifically dealt with organizing a dodgeball tournament between two friendly rivals: police officers and firefighters in the city of Phoenix. All proceeds raised from this fundraising dodgeball tournament were donated back to first responders working in the city of Phoenix.

ContributorsAberra, Blaine (Author) / Minton, Sarah (Co-author) / Eaton, Kathryn (Thesis director) / McIntosh, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05
Description

Graph neural networks (GNN) offer a potential method of bypassing the Kohn-Sham equations in density functional theory (DFT) calculations by learning both the Hohenberg-Kohn (HK) mapping of electron density to energy, allowing for calculations of much larger atomic systems and time scales and enabling large-scale MD simulations with DFT-level accuracy.

Graph neural networks (GNN) offer a potential method of bypassing the Kohn-Sham equations in density functional theory (DFT) calculations by learning both the Hohenberg-Kohn (HK) mapping of electron density to energy, allowing for calculations of much larger atomic systems and time scales and enabling large-scale MD simulations with DFT-level accuracy. In this work, we investigate the feasibility of GNNs to learn the HK map from the external potential approximated as Gaussians to the electron density 𝑛(𝑟), and the mapping from 𝑛(𝑟) to the energy density 𝑒(𝑟) using Pytorch Geometric. We develop a graph representation for densities on radial grid points and determine that a k-nearest neighbor algorithm for determining node connections is an effective approach compared to a distance cutoff model, having an average graph size of 6.31 MB and 32.0 MB for datasets with 𝑘 = 10 and 𝑘 = 50 respectively. Furthermore, we develop two GNNs in Pytorch Geometric, and demonstrate a decrease in training losses for a 𝑛(𝑟) to 𝑒(𝑟) of 8.52 · 10^14 and 3.10 · 10^14 for 𝑘 = 10 and 𝑘 = 20 datasets respectively, suggesting the model could be further trained and optimized to learn the electron density to energy functional.

ContributorsHayes, Matthew (Author) / Muhich, Christopher (Thesis director) / Oswald, Jay (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2023-05
Description

In this project, we will argue that the Kardashian women influence beauty standards by portraying themselves as beauty moguls to control the interests of their audience and promoting themselves as the modern day standard of beauty. This affects their audience by creating unattainable and unrealistic standards of beauty that negatively

In this project, we will argue that the Kardashian women influence beauty standards by portraying themselves as beauty moguls to control the interests of their audience and promoting themselves as the modern day standard of beauty. This affects their audience by creating unattainable and unrealistic standards of beauty that negatively impacts their sense of self and mental health. We will explore the influence they have created and why their influence remains preferred by their audience over time, explaining how they maintain control of the industry.

ContributorsEhly, Taylor (Author) / Montoya, Emily (Co-author) / Fontinha de Alcantara, Christiane (Thesis director) / Saba, Cassandra (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05
Description

In this project, we will argue that the Kardashian women influence beauty standards by portraying themselves as beauty moguls to control the interests of their audience and promoting themselves as the modern day standard of beauty. This affects their audience by creating unattainable and unrealistic standards of beauty that negatively

In this project, we will argue that the Kardashian women influence beauty standards by portraying themselves as beauty moguls to control the interests of their audience and promoting themselves as the modern day standard of beauty. This affects their audience by creating unattainable and unrealistic standards of beauty that negatively impacts their sense of self and mental health. We will explore the influence they have created and why their influence remains preferred by their audience over time, explaining how they maintain control of the industry.

ContributorsMontoya, Emily (Author) / Ehly, Taylor (Co-author) / Fontinha de Alcantara, Christiane (Thesis director) / Saba, Cassandra (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05
Description
This honors thesis report aims to propose a sustainable long-term solution for providing off-grid solar energy to rural communities that lack the necessary grid energy infrastructure. With this in mind, we aim to establish the framework and documentation for people to be able to build and maintain their own off-grid

This honors thesis report aims to propose a sustainable long-term solution for providing off-grid solar energy to rural communities that lack the necessary grid energy infrastructure. With this in mind, we aim to establish the framework and documentation for people to be able to build and maintain their own off-grid solar power systems. Due to recent pushes for clean energy both nationwide and statewide, the team will discuss the current renewable energy market and the incentives to justify the future growth potential of residential solar energy systems, which includes off-grid or remote solar. This discussion will include comparing pre-built solar systems currently offered for purchase against the proposed design outlined in this report. Notably, the outlined design has been made with an emphasis on system sustainability, low initial cost, reliability, ease of manufacturing/maintenance, and material selection. Lastly, the team will discuss the project’s approach to documentation with a user manual draft to ensure the system's long-term sustainability and troubleshooting. Although the efforts of this project have increased over time, this project remains active within the ASU EWB chapter, meaning that not all aspects described throughout this report are fully complete. The Native American community of Shonto, Arizona, will be used as an example to understand a rural community's needs for designing a solar panel system that provides sufficient energy for a single household. The project was completed in collaboration with Arizona State University’s Engineering Projects In Community Service (EPICS) program and Engineers Without Borders (EWB) chapter. Both these organizations aim to connect ASU students to the professional mentors and resources they need to design and implement low-cost, small-scale, easily replicated, and sustainable engineering projects.
ContributorsHaq, Emmen (Author) / Sosa, Jorge (Co-author) / Beltran, Salvador (Thesis director) / Pham, Brandon (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2024-05
Description
Our mission is to provide a valuable experience for the everyday consumer that both tests personal attributes, like logic or memory, and is also legitimately fun. We want our product to be a hands-on, exciting puzzle box experience that anybody can use. Our goal is to become a leading brand

Our mission is to provide a valuable experience for the everyday consumer that both tests personal attributes, like logic or memory, and is also legitimately fun. We want our product to be a hands-on, exciting puzzle box experience that anybody can use. Our goal is to become a leading brand of puzzle boxes and be able to provide fun, educational experiences to everyone. We also would like to serve schools by providing learning experiences all over the world at an affordable price.
ContributorsPhanindra, Tarang (Author) / Schultz, Tanner (Co-author) / Lynch, Aiden (Co-author) / Burruss, Peyton (Co-author) / Wallace, Dallin (Co-author) / Byrne, Jared (Thesis director) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2024-05
Description

Mixed Matrix Membranes (MMMs) combine a continuous organic polymer phase with a distributed porous additive, i.e. filler, and benefit from the ease processability of polymers as well as the improved gas separation performance of diverse porous filler materials. MMMs may have separation qualities that outperform the selectivity/permeability trade-off reported in

Mixed Matrix Membranes (MMMs) combine a continuous organic polymer phase with a distributed porous additive, i.e. filler, and benefit from the ease processability of polymers as well as the improved gas separation performance of diverse porous filler materials. MMMs may have separation qualities that outperform the selectivity/permeability trade-off reported in pure polymer membranes. All MMMs require a polymer phase and a filler, and in this research a Pebax-1657 is used as a matrix and for filler a Covalent organic framework (COF) as it is less understood. Covalent organic frameworks (COFs) represent a category of porous organic polymers that have garnered significant interest across various fields, including gas adsorption and storage, catalysis, sensing, and photovoltaics. These frameworks offer outstanding characteristics such as permanent porosity, high surface areas, and easily adjustable frameworks [3]. Additionally, their entirely organic composition can lead to enhanced interactions between fillers and polymers, mitigating the formation of nonselective defects during mixed-matrix membrane (MMM) preparation that are often seen with using other sorts of fillers such as silica and metal- organic frameworks (MOFs). Once synthesized the MMMs which are based on COF will be tested in an in house built gas permeance setup to test for single gas permeance, giving us deep insight into the performance of the COF bas MMMs.

ContributorsTomar, Dhruv Singh (Author) / Jin, Kailong (Thesis director) / Lopez, Jose (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2024-05
Description
In this report, a PDMS network formed from catalysis of a linear, bifunctional polymer by Ashby-Karstedt’s catalyst is analyzed. An exploration of the crosslink density, shear plateau modulus, and glass transition temperature is performed to display some of the material’s mechanical, chemical, and thermal properties. The softness of this network

In this report, a PDMS network formed from catalysis of a linear, bifunctional polymer by Ashby-Karstedt’s catalyst is analyzed. An exploration of the crosslink density, shear plateau modulus, and glass transition temperature is performed to display some of the material’s mechanical, chemical, and thermal properties. The softness of this network in addition to the biocompatibility and thermal stability of PDMS make this elastomer useful for a broad spectrum of applications.
ContributorsEnos, Emma (Author) / Jin, Kailong (Thesis director) / Self, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2024-05
Description

Polyketides are a wide ranging class of natural microbial products highly relevant to the pharmacological industry. As chemical synthesis of polyketides is quite challenging, significant effort has been made to understand the polyketide synthases (PKSs) responsible for their natural production. Native to Streptomyces, the aln biosynthetic gene cluster was recently

Polyketides are a wide ranging class of natural microbial products highly relevant to the pharmacological industry. As chemical synthesis of polyketides is quite challenging, significant effort has been made to understand the polyketide synthases (PKSs) responsible for their natural production. Native to Streptomyces, the aln biosynthetic gene cluster was recently characterized and encodes for an iterative type I polyketide synthase (iT1PKS). This iT1PKS produces both , and ,-double bond polyketides named allenomycins; however, the basis in which one bond is chosen over the other is not yet clear. The dehydratase domain, AlnB_DH, is thought to be solely responsible for catalyzing double bond formation. Elucidation of enzyme programming is the first step towards reprogramming AlnB_DH to produce novel industrially relevant products. The Nannenga lab has worked as collaborators to the Zhao lab at the University of Illinois at Urbana-Champaign to unravel AlnB_DH’s structure and mechanism. Here, mutant constructs of AlnB_DH are developed to elucidate enzyme structure and provide insight into active site machinery. The primary focus of this work is on the development of the mutant constructs themselves rather than the methods used for structural or mechanistic determination. Truncated constructs were successfully developed for crystallization and upon x-ray diffraction, a 2.45 Å resolution structure was determined. Point-mutated constructs were then developed based on structural insights, which identified H49, P58, and H62 as critical residues in active site machinery.

ContributorsBlackson, Wyatt (Author) / Nannenga, Brent (Thesis director) / Nielsen, David (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description
Upon cooling a semicrystalline polymer from its amorphous melt state, it undergoes melt crystallization where organized microstructures develop through a process of nucleation and crystal growth. Understanding the crystallization kinetics of a semicrystalline thermoplastic is key to tuning crystallinity and microstructure, which play integral roles in the material’s final properties

Upon cooling a semicrystalline polymer from its amorphous melt state, it undergoes melt crystallization where organized microstructures develop through a process of nucleation and crystal growth. Understanding the crystallization kinetics of a semicrystalline thermoplastic is key to tuning crystallinity and microstructure, which play integral roles in the material’s final properties such as toughness, gas permeability, and degradation rate. Nonisothermal crystallization, in particular, has great technological relevance to polymer engineering processes such as injection molding, film blowing, and fiber spinning, all of which rely on fast cooling rates. Spectroscopic, scattering, calorimetric, and rheological techniques have been conventionally used for studying nonisothermal crystallization, but can be limited in their sensitivity, tunability, and availability. Our group has recently developed a fluorescence technique for sensing the melting transitions of semicrystalline thermoplastics by incorporating fluorescent probes into polymer matrices. Herein, this methodology has been extended to an in-situ study of nonisothermal melt crystallization by monitoring the T-dependent fluorescence intensity of the fluorophores incorporated into a polymer matrix. As crystals form upon cooling from the amorphous melt state, the intramolecular motions of fluorophores are restricted and thus their T-dependent fluorescence intensity data exhibit a stepwise increase during nonisothermal crystallization. The first derivative of the T-dependent fluorescence intensity data can provide insight into the onset, peak, and endset crystallization temperatures, all of which align reasonably well with conventional differential scanning calorimetry measurements. This facile, sensitive, and contact-free fluorescence technique can access faster cooling rates (up to ~100 oC min-1) than many other existing methods for nonisothermal crystallization studies, which is more relevant to industrial polymer processing conditions. Additionally, the fluorescence detection mechanism shows great sensitivity not only to the degree of crystallinity but also to the crystalline microstructure formed during nonisothermal crystallization. Furthermore, unique fluorescent labeling is expected to foster novel studies on the local crystallization within heterogeneous polymeric systems including blends, composites, and multilayer films. Such local crystallization studies are out of reach for most conventional techniques that measure spatially averaged properties. Overall, this nonisothermal crystallization study expands the capabilities of this novel fluorescence technique for advancing the field of semicrystalline thermoplastic design and processing.
ContributorsCabello, Maya (Author) / Jin, Kailong (Thesis director) / Nile, Gabriel (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05