Matching Items (21)
Filtering by

Clear all filters

Description

Classification in machine learning is quite crucial to solve many problems that the world is presented with today. Therefore, it is key to understand one’s problem and develop an efficient model to achieve a solution. One technique to achieve greater model selection and thus further ease in problem solving is

Classification in machine learning is quite crucial to solve many problems that the world is presented with today. Therefore, it is key to understand one’s problem and develop an efficient model to achieve a solution. One technique to achieve greater model selection and thus further ease in problem solving is estimation of the Bayes Error Rate. This paper provides the development and analysis of two methods used to estimate the Bayes Error Rate on a given set of data to evaluate performance. The first method takes a “global” approach, looking at the data as a whole, and the second is more “local”—partitioning the data at the outset and then building up to a Bayes Error Estimation of the whole. It is found that one of the methods provides an accurate estimation of the true Bayes Error Rate when the dataset is at high dimension, while the other method provides accurate estimation at large sample size. This second conclusion, in particular, can have significant ramifications on “big data” problems, as one would be able to clarify the distribution with an accurate estimation of the Bayes Error Rate by using this method.

ContributorsLattus, Robert (Author) / Dasarathy, Gautam (Thesis director) / Berisha, Visar (Committee member) / Turaga, Pavan (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2021-12
Description
Most machine learning algorithms, and specifically neural networks, utilize vector-matrix multiplication (VMM) to process information, but these calculations are CPU intensive and can have long run-times. This issue is fundamentally outlined by the von Neumann bottleneck. Because of this undesirable expense associated with performing VMM via software, the exploration of

Most machine learning algorithms, and specifically neural networks, utilize vector-matrix multiplication (VMM) to process information, but these calculations are CPU intensive and can have long run-times. This issue is fundamentally outlined by the von Neumann bottleneck. Because of this undesirable expense associated with performing VMM via software, the exploration of new ways to perform the same calculations via hardware have grown more popular. When performed with hardware that is specialized to perform these calculations, VMM becomes far more power-efficient and less time consuming. This project expands upon those principles and seeks to validate the use of RRAM in this hardware. The flexibility of the conductance of RRAM makes these devices a strong contender for hardware-driven VMM calculation for neural network computing. The conductance of these devices is affected by the pulse width of a voltage signal sent across the devices at each node. This pulse is produced on-chip and can be modified by user inputs. The design of this pulse- producing circuit, as well as the simulated and physical functionality of the design, is discussed in this Honors Thesis. Simulation and physical testing of the pulse-producing design on the ASIC have verified correct operation of the design. This operation is imperative to the future ability of the ASIC to perform accurate VMM.
ContributorsPearson, Katherine (Author) / Barnaby, Hugh (Thesis director) / Wilson, Donald (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
Description

To reduce the cost of silicon solar cells and improve their efficiency, it is crucial to identify and understand the defects limiting the electrical performance in silicon wafers. Bulk defects in semiconductors produce discrete energy levels within the bandgap and may act as recombination centers. This project investigates the viability

To reduce the cost of silicon solar cells and improve their efficiency, it is crucial to identify and understand the defects limiting the electrical performance in silicon wafers. Bulk defects in semiconductors produce discrete energy levels within the bandgap and may act as recombination centers. This project investigates the viability of using machine learning for characterizing bulk defects in Silicon by using a Random Forest Regressor to extract the defect energy level and capture cross section ratios for a simulated Molybdenum defect and experimental Silicon Vacancy defect. Additionally, a dual convolutional neural network is used to classify the defect energy level in the upper or lower half bandgap.

ContributorsWoo, Vanessa (Author) / Bertoni, Mariana (Thesis director) / Rolston, Nicholas (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
Description
Semiconductor manufacturing produces a variety of particle defects on wafer surfaces, each defect having its own topology. Statistical trends among these topologies can be discovered by using unsupervised machine learning techniques such as K-means clustering. By employing four (4) different heuristics, the K-means algorithm can be optimized to generate clusters

Semiconductor manufacturing produces a variety of particle defects on wafer surfaces, each defect having its own topology. Statistical trends among these topologies can be discovered by using unsupervised machine learning techniques such as K-means clustering. By employing four (4) different heuristics, the K-means algorithm can be optimized to generate clusters of defect images that are well separated and highly congruent to the features extracted from the images. The result is the formation of clusters that demonstrate a high degree of qualitative similarity among the topologies of all the defects in the cluster. Further study should confirm which exact features are selected by the model by comparing trends in chemical or procedural analyses.
ContributorsGonilovic, Sanjin (Author) / Rolston, Nicholas (Thesis director) / Johnson, Jason (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2024-05
Description
This work details the bootstrap estimation of a nonparametric information divergence measure, the Dp divergence measure, using a power law model. To address the challenge posed by computing accurate divergence estimates given finite size data, the bootstrap approach is used in conjunction with a power law curve to calculate an

This work details the bootstrap estimation of a nonparametric information divergence measure, the Dp divergence measure, using a power law model. To address the challenge posed by computing accurate divergence estimates given finite size data, the bootstrap approach is used in conjunction with a power law curve to calculate an asymptotic value of the divergence estimator. Monte Carlo estimates of Dp are found for increasing values of sample size, and a power law fit is used to relate the divergence estimates as a function of sample size. The fit is also used to generate a confidence interval for the estimate to characterize the quality of the estimate. We compare the performance of this method with the other estimation methods. The calculated divergence is applied to the binary classification problem. Using the inherent relation between divergence measures and classification error rate, an analysis of the Bayes error rate of several data sets is conducted using the asymptotic divergence estimate.
ContributorsKadambi, Pradyumna Sanjay (Author) / Berisha, Visar (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Divergence functions are both highly useful and fundamental to many areas in information theory and machine learning, but require either parametric approaches or prior knowledge of labels on the full data set. This paper presents a method to estimate the divergence between two data sets in the absence of fully

Divergence functions are both highly useful and fundamental to many areas in information theory and machine learning, but require either parametric approaches or prior knowledge of labels on the full data set. This paper presents a method to estimate the divergence between two data sets in the absence of fully labeled data. This semi-labeled case is common in many domains where labeling data by hand is expensive or time-consuming, or wherever large data sets are present. The theory derived in this paper is demonstrated on a simulated example, and then applied to a feature selection and classification problem from pathological speech analysis.
ContributorsGilton, Davis Leland (Author) / Berisha, Visar (Thesis director) / Cochran, Douglas (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Epilepsy affects numerous people around the world and is characterized by recurring seizures, prompting the ability to predict them so precautionary measures may be employed. One promising algorithm extracts spatiotemporal correlation based features from intracranial electroencephalography signals for use with support vector machines. The robustness of this methodology is tested

Epilepsy affects numerous people around the world and is characterized by recurring seizures, prompting the ability to predict them so precautionary measures may be employed. One promising algorithm extracts spatiotemporal correlation based features from intracranial electroencephalography signals for use with support vector machines. The robustness of this methodology is tested through a sensitivity analysis. Doing so also provides insight about how to construct more effective feature vectors.
ContributorsMa, Owen (Author) / Bliss, Daniel (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
Description
Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic

Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic indoor or urban environments. Using recent improvements in the field of machine learning, this project proposes a new method of localization using networks with several wireless transceivers and implemented without heavy computational loads or high costs. This project aims to build a proof-of-concept prototype and demonstrate that the proposed technique is feasible and accurate.

Modern communication networks heavily depend upon an estimate of the communication channel, which represents the distortions that a transmitted signal takes as it moves towards a receiver. A channel can become quite complicated due to signal reflections, delays, and other undesirable effects and, as a result, varies significantly with each different location. This localization system seeks to take advantage of this distinctness by feeding channel information into a machine learning algorithm, which will be trained to associate channels with their respective locations. A device in need of localization would then only need to calculate a channel estimate and pose it to this algorithm to obtain its location.

As an additional step, the effect of location noise is investigated in this report. Once the localization system described above demonstrates promising results, the team demonstrates that the system is robust to noise on its location labels. In doing so, the team demonstrates that this system could be implemented in a continued learning environment, in which some user agents report their estimated (noisy) location over a wireless communication network, such that the model can be implemented in an environment without extensive data collection prior to release.
ContributorsChang, Roger (Co-author) / Kann, Trevor (Co-author) / Alkhateeb, Ahmed (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Machine learning is a powerful tool for processing and understanding the vast amounts of data produced by sensors every day. Machine learning has found use in a wide variety of fields, from making medical predictions through correlations invisible to the human eye to classifying images in computer vision applications. A

Machine learning is a powerful tool for processing and understanding the vast amounts of data produced by sensors every day. Machine learning has found use in a wide variety of fields, from making medical predictions through correlations invisible to the human eye to classifying images in computer vision applications. A wide range of machine learning algorithms have been developed to attempt to solve these problems, each with different metrics in accuracy, throughput, and energy efficiency. However, even after they are trained, these algorithms require substantial computations to make a prediction. General-purpose CPUs are not well-optimized to this task, so other hardware solutions have developed over time, including the use of a GPU, FPGA, or ASIC.

This project considers the FPGA implementations of MLP and CNN feedforward. While FPGAs provide significant performance improvements, they come at a substantial financial cost. We explore the options of implementing these algorithms on a smaller budget. We successfully implement a multilayer perceptron that identifies handwritten digits from the MNIST dataset on a student-level DE10-Lite FPGA with a test accuracy of 91.99%. We also apply our trained network to external image data loaded through a webcam and a Raspberry Pi, but we observe lower test accuracy in these images. Later, we consider the requirements necessary to implement a more elaborate convolutional neural network on the same FPGA. The study deems the CNN implementation feasible in the criteria of memory requirements and basic architecture. We suggest the CNN implementation on the same FPGA to be worthy of further exploration.
ContributorsLythgoe, Zachary James (Author) / Allee, David (Thesis director) / Hartin, Olin (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
Description
This paper introduces a wireless reconfigurable “button-type” pressure sensor system, via machine learning, for gait analysis application. The pressure sensor system consists of an array of independent button-type pressure sensing units interfaced with a remote computer. The pressure sensing unit contains pressure-sensitive resistors, readout electronics, and a wireless Bluetooth module,

This paper introduces a wireless reconfigurable “button-type” pressure sensor system, via machine learning, for gait analysis application. The pressure sensor system consists of an array of independent button-type pressure sensing units interfaced with a remote computer. The pressure sensing unit contains pressure-sensitive resistors, readout electronics, and a wireless Bluetooth module, which are assembled within footprint of 40 × 25 × 6mm3. The small-footprint, low-profile sensors are populated onto a shoe insole, like buttons, to collect temporal pressure data. The pressure sensing unit measures pressures up to 2,000 kPa while maintaining an error under 10%. The reconfigurable pressure sensor array reduces the total power consumption of the system by 50%, allowing extended period of operation, up to 82.5 hrs. A robust machine learning program identifies the optimal pressure sensing units in any given configuration at an accuracy of up to 98%.
ContributorsBooth, Jayden Charles (Author) / Chae, Junseok (Thesis director) / Chen, Ang (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12